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Abstract. We propose a pulse neural network that exhibits chaotic pat-
tern alternations among stored patterns as a model of multistable per-
ception, which is reflected in phenomena such as binocular rivalry and
perceptual ambiguity. When we regard the mixed state of patterns as
a part of each pattern, the durations of the retrieved pattern obey uni-
modal distributions. The mixed states of the patterns are essential to
obtain the results that are consistent with psychological studies. Based
on these results, it is proposed that many pre-existing attractors in the
brain might relate to the general category of multistable phenomena,
such as binocular rivalry and perceptual ambiguity.
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1 Introduction

In the perception of visual information, it is well known that multiple stable
states compete for perceptual dominance. For example, when two different stim-
uli are presented to the eyes, the dominant stimulus perceived fluctuates over
time, a phenomenon known as binocular rivalry [1, 2]. Similarly, when an am-
biguous figure such as a Necker cube is presented, the dominant interpretation
also fluctuates over time [3]. Research has also indicated that the duration of
the dominant state (dominance duration) may be characterized by a unimodal
distribution, such as the gamma distribution [2, 3] or the log-normal distribution
[1].

One possible mechanism for such fluctuations in multistable perception is
associated with noise in the visual system, which is generated by small eye move-
ments and microsaccades. On the other hand, the deterministic chaos generated
by nonlinear dynamics in the brain may also be responsible for such fluctuations.
Several dynamical models in which the state of the network changes chaotically
among several patterns have been proposed [4–6]. However, the duration of a
pattern in the chaotic networks does not obey a unimodal distribution, but it
typically obeys a monotonically decreasing distribution [6].
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In the present study, we report that the pattern alternations caused by
chaotic dynamics of a pulse neural network can reproduce the properties of mul-
tistable perception. This network is composed of neuronal models which emit
pulses when a sufficiently strong input is injected [7–9], while the previous mod-
els were composed of conventional neuronal models based on firing rates. By
storing several patterns based on the mechanism of associative memory, this
network shows chaotic pattern alternations [10, 11]. It is observed that the du-
rations of the retrieved pattern obey unimodal distributions when we regard the
mixed state of patterns as a part of each pattern.

Based on these results, it is proposed that many pre-existing attractors in
the brain might relate to the general category of multistable phenomena, such
as binocular rivalry and perceptual ambiguity. In the previous work, we called
such a set of pre-existing attractors as “attractor landscape” [11].

This paper is organized as follows. In section 2, we define a pulse neural
network composed of excitatory neurons and inhibitory neurons exhibiting syn-
chronized, chaotic firing. This network is referred to as the one-module system.
In section 3, we connect eight modules of networks in which three patterns are
stored according to the mechanism of associative memory. We show that chaotic
dynamics are responsible for alterations in the retrieved patterns over time. It is
observed that the durations of the retrieved pattern are shown to obey unimodal
distributions. The final section provides conclusions.

2 One-module system

In sections 2 and 3, we introduce a neural network of theta neurons with phases
as their internal states [7–9]. When a sufficiently strong input is provided, each
neuron yields a pulse by increasing its phase around a circle and returning to
its original phase. The network is composed of NE excitatory neurons and NI

inhibitory neurons governed by the following equations:
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where θ
(i)
E and θ

(i)
I are the phases of the ith excitatory neuron and the ith

inhibitory neuron, respectively. r is a parameter of the neurons that determines
whether the equilibrium of each neuron is stable or not. We used r = −0.025
to ensure that each neuron had a stable equilibrium. X = E or I denote the

excitatory or inhibitory ensemble, respectively, while t
(j)
k is the kth firing time

of the jth neuron in the ensemble X, and the firing time is defined as the time

at which θ
(j)
X exceeds π in the positive direction. The neurons communicate
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with each other using the post-synaptic potentials whose waveforms are the

exponential functions as shown in Eq.(3). ξ
(i)
X (t) represents Gaussian white noise

added to the ith neuron in the ensemble X.

Fig. 1. (a) Chaotic synchronization observed in a module withD = 0.0032, r = −0.025,
gint = 4, and gext = 2.5. Raster plot of spikes of 200 randomly chosen excitatory
neurons and inhibitory neurons in a module with NE = NI = 2000 is shown. (b)
Chaotic synchronization in a module with an infinite number of neurons obtained by
analysis with Fokker-Planck equations. The values of parameters are the same as those
used in (a). Temporal changes in the instantaneous firing rates JE and JI are shown.

In the following, this network is referred to as a one-module system, which ex-
hibits various patterns of synchronized firing [9]. We utilized the chaotic synchro-
nization shown in Fig. 1. In Fig. 1(a), a raster plot of spikes of 200 randomly cho-
sen excitatory neurons and inhibitory neurons in a module withNE = NI = 2000
is shown. This plot allows one to observe the synchronized firing of neurons, and
that the intervals of synchronized firing do not remain constant. To analyze
this variability, we took the limit of NE , NI → ∞ in order to obtain the Fokker-
Planck equation, which governs the dynamics of the probability densities nE(θE)

and nI(θI) of θ
(i)
E and θ

(i)
I as shown in Ref.[10]. The instantaneous firing rates

JE and JI of the excitatory and inhibitory ensembles obtained from the analysis
of the Fokker-Planck equation are shown in Fig. 1(b). The largest Lyapunov
exponent of the data in Fig. 1(b) is positive [9], indicating that the dynamics of
JE and JI are chaotic.
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In the following, only the one-module systems with infinite neurons treated in
Fig. 1(b) are considered, as the Fokker-Planck equation does not contain noise,
allowing for the reproduction of analyses.

3 Pattern alternations in multiple modules of network

In this section, we define a network with multiple modules [10, 11]. Several pat-
terns can be stored in this network according to the mechanism of associative
memory.

The synaptic inputs TEi and TIi injected to the ith excitatory ensemble Ei
and the inhibitory ensemble Ii, respectively, are defined as

TEi = (gint − γϵEE)IEi − gextIIi +
M∑
j=1

ϵEijIEj , (5)

TIi = (gext − γϵIE)IEi − gintIIi +
M∑
j=1

ϵIijIEj , (6)

which are composed of both intra-module and inter-module connections. By
replacing the terms IE(t) and II(t) in Eqs.(1) and (2) with TEi and TIi in
Eqs.(5) and (6), a network with multiple modules is defined.

The strengths of connections are defined as

ϵEij =

{
ϵEEKij if Kij > 0
0 otherwise

, (7)

ϵIij = ϵIE |Kij |, (8)

Kij =
1

Ma(1− a)

p∑
µ=1

ηµi (η
µ
j − a), (9)

where ηµi ∈ {0, 1} is the stored value in the ith module for the µth pattern, M is
the number of modules, p is the number of patterns, and a is the rate of modules
that store the value “1”. Note that ϵEE and ϵIE scale the strengths of the inter-
module connections to the excitatory and inhibitory ensembles, respectively. In
the following, we set M = 8, p = 3, and a = 0.5.

Three patterns stored in the network of eight modules are defined as

η1i =

{
1 if i ≤ M/2
0 otherwise

, (10)

η2i =

{
1 if M/4 < i ≤ 3M/4
0 otherwise

, (11)

η3i =

{
1 if i mod 2 = 1
0 otherwise

. (12)

In the following, the dynamics of the network are examined by regulating the
inter-module connections ϵIE , for the fixed values of parameters γ = 0.6 and
ϵEE = 1.25.
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Fig. 2. Chaotic pattern alternations observed for ϵIE = 1.68.

In Fig. 2, the dynamics of eight modules for ϵIE = 1.68 are shown. The
changes in the instantaneous firing rates JEi of the excitatory ensemble in the
ith module are aligned vertically. It is observed that the retrieved pattern alters
over time. The analysis of the network is performed with the Fokker-Planck
equation, which does not contain noise because the limit NE , NI → ∞ is taken.
Therefore, the dynamics shown in Fig. 2 are not caused by noise but by chaos
that is inherent in the network. This fact can be confirmed via analysis using
Lyapunov spectra [10].

Fig. 3. Changes in three overlaps over time.

In order to investigate the retrieved pattern in the network, it is useful to
define the overlap of the network with each pattern, which is similar to the inner
product (detailed in Ref.[10]). The overlaps calculated from the dynamics during
0 ≤ t ≤ 10000 shown in Fig.2 are shown in Fig.3. Note that mµ takes values
close to 1 when the µth pattern is retrieved.
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In Figs. 2 and 3, short bursts are observed around t ≃ 1000, 6000, 8500,
where the modules that do not store “1” in the retrieved pattern oscillate. Such
patterns are referred to as mixed states in the associative memory literature. In
our network with three patterns, we can observe six mixed states as shown in
Fig. 4.

Fig. 4. The relationships among three patterns and their mixed states.

In order to incorporate the effect of the mixed state into the duration of each
pattern, we defined the macroscopic duration. As shown in Fig. 3, when examin-
ing the macroscopic duration, we regard that the system retains the previously
retrieved pattern even during the period when 0.5 ≤ m1,m2,m3 < 1.

The macroscopic duration is based on the consideration that the mixed states
represent the internal dynamics of the brain, and that these states are thus
unobservable in psychological experiments. Mixed states were always unstable
in the range of ϵIE in the present study, and their time-averaged duration was
much shorter than those of three patterns, as shown below.

The dependence of the time-averaged values of the macroscopic duration on
the inter-module connection strength ϵIE is shown in Fig. 5. All values were
calculated using the durations of three patterns. We observed that the time-
averaged durations diverged at the critical point ϵIE = ϵ0 ≃ 1.75, and monoton-
ically decreased with decreases in ϵIE . The time-averaged durations of the mixed
states were always below 200 and much shorter than those of three patterns (data
not shown).

Next we examine the distribution of the duration of each pattern when
chaotic pattern alternations occur. The distributions of the macroscopic dura-
tions are shown in Fig. 6, in which the solid lines show the fit with the log-normal
distribution. In Ref. [1], the dominant durations of binocular rivalry follow a log-
normal distribution. Similarly, the distribution of the macroscopic durations in
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Fig. 5. The dependence of time-averaged macroscopic duration on the inter-module
connection strength ϵIE .

Fig. 6. The distributions of the macroscopic durations. The solid lines indicate the fit
with the log-normal distribution.

our system also follows a log-normal distribution, as shown in Fig. 6. Therefore,
we conclude that these macroscopic durations are appropriate as models of the
dominance durations of binocular rivalry and perceptual ambiguity.

4 Conclusions

We proposed a pulse neural network that exhibits chaotic pattern alternations
between three stored patterns as a model of multistable perception, which is
reflected in such phenomena as binocular rivalry and perceptual ambiguity.

To measure the durations of each pattern, we introduced the macroscopic
duration, which treats the mixed state as part of each pattern.

The distribution of the macroscopic durations was unimodal, following a
log-normal distribution. Therefore, we conclude that the macroscopic durations
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of the chaotic pattern alternations can reproduce the unimodal distribution of
dominance durations observed in multistable perception.

Based on these results, we propose that many pre-existing attractors in the
brain might relate to the general category of multistable phenomena, such as
binocular rivalry and perceptual ambiguity.
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