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Abstract

An associative memory retrieval in a pulse neural network composed of the FitzHugh-Nagumo

neurons is investigated. The memory is represented in the spatio-temporal firing pattern of the

neurons, and the memory retrieval is accomplished using the fluctuation in the system. The

storage capacity of the network is investigated numerically. It is demonstrated that this pulse

neural network is capable of an alternate retrieval of two patterns.
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I. INTRODUCTION

Recently, there is a considerable attraction of attentions to the associative memory in

neural networks composed of model neurons which change their dynamical states temporally,

such as, chaotic neurons, oscillator neurons, or spiking neurons [1–14]. They not only arouse

the theoretical interests, but also may have a lot to do with the problem of information

coding in the brain [15].

Among them, numerous authors investigate the coupled phase oscillators [3–9], which

are the general reduced model of the coupled limit-cycle oscillators. All the neurons are

oscillating with the almost same period, and the memory is represented in the relative phase

differences of oscillators, so they can store the analog-valued patterns. And this model has

an advantage that the usual techniques for the theoretical analysis of associative memory

[16, 17] are applicable.

On the other hand, neural networks composed of spiking neurons also show the properties

of associative memory [11–13]. In those systems, following models are often used as spiking

neurons, namely, the Hodgkin-Huxley equation which describes the dynamics of squid giant

axons, the FitzHugh-Nagumo equation which is the reduced model of the Hodgkin-Huxley

equation, or the leaky integrate-and-fire model which has the internal state described by a

linear differential equation and a spiking mechanism with a threshold. The couplings among

those neurons are accompanied with the time delay which models the time for a pulse to

propagate on the axon from the pre-synaptic neuron to the post-synaptic neuron, and the

memory is represented in the spatio-temporal firing pattern of the neurons.

Meanwhile, the physiological environment where neurons operate is thought to be highly

noisy [18, 19], so the effect of the fluctuation may not be neglected. Generally, stochastic

resonance (SR) is a well-known phenomenon where a weak input signal is enhanced by its

background fluctuation and observed in many nonlinear systems [20–22]. Particularly, SR in

a single neuron is well investigated by numerous researchers both experimentally [23, 24] and

theoretically [25–31], and it is proposed that the biological sensory system may utilize SR to

improve the sensitivity to the external input signal. Recently, the effect of SR in spatially

extended systems, or neural networks, is investigated, and some new features are reported

[32–34]. Concerning SR in the coupled FitzHugh-Nagumo equation, we proposed that the

background fluctuation may play a functional role like a parameter of the dynamical system
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[34].

In the present paper, the associative memory composed of the FitzHugh-Nagumo neurons

with the fluctuation is treated, and SR-like effects in this system are considered. In Sec. II, a

coupled FitzHugh-Nagumo equation and some quantities are defined. In Sec. III, the results

of numerical simulations are presented. The memory retrieval by adding the fluctuation into

the system and its dependence on the fluctuation intensity are examined, and an SR-like

phenomenon is observed. The basin of the attraction and the storage capacity of the system

are also investigated numerically. In Sec. IV, theoretical analyses for the fluctuation-induced

memory retrieval are presented. In Sec. V, the simultaneous retrieval of two patterns is

observed as the alternate firings of the particular neurons. Conclusions and discussions are

given in the last section.

II. ASSOCIATIVE MEMORY COMPOSED OF SPIKING NEURONS

In the following, as a model of associative memory, we treat a coupled FitzHugh-Nagumo

(FN) equation written as

τ u̇i = −vi + ui − u3
i /3 + Ii(t) + ηi(t) +

N∑
j=1

Jij(uj(t− dp)− ueq), (1)

v̇i = ui − βvi + γ, (2)

〈ηi(t)ηj(t′)〉 = Dδijδ(t− t′), (3)

where β = 0.8, γ = 0.7, τ = 0.1, ueq = −1.2, dp = 3, ui and vi denote the internal states of

the i-th neuron, Ii(t) is the external input, ηi(t) is the Gaussian white noise which represents

the fluctuation in the system. Note that a single FN neuron shows the characteristic of

the spiking neuron, namely, it has a stable rest state, and with an appropriate amount of

disturbance it generates a pulse with a characteristic magnitude of height and width, ueq is

the equilibrium value of ui for Ii(t) = 0, ηi(t) = 0, and Jij = 0 (i, j = 1, 2, · · · , N), and that

dp is the uniform propagational time delay.

Then let us make the above N neurons store p random patterns ξµi (i = 1, 2, · · · , N ,

µ = 1, 2, · · · , p), generated according to the probability density function

P (ξµi ) = (1− a)δ(ξµi ) + aδ(ξµi − 1), (4)

where δ(x) denotes the delta function and a (0 ≤ a ≤ 1) is the average of ξµi . Following
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Yoshioka and Shiino [13], the connection coefficients Jij are defined as

Jij =
w

Na(1− a)
p∑

µ=1

ξµi (ξ
µ
j − a), (5)

where the parameter w scales the strength of Jij and is fixed at w = 0.15 in the following.

Note that the matrix Jij ∝ ∑
µ ξ

µ
i (ξ

µ
j − a) is used instead of usual Jij ∝ ∑

µ(ξ
µ
i − a)(ξµj − a)

so as not to give the negative input to the neurons which store 0’s, because the FN neuron

can fire even with the negative input due to the rebound effect [35].

The external input Ii(t) is defined as

Ii(t) = IxiΘ(t) (xi ∈ {0, 1}), (6)

where I is the strength of the external input, xi is the binary factor which determines

whether the input is injected to the i-th neuron or not, and Θ(t) is Heaviside’s step function

which takes 1 for t ≥ 0 and otherwise takes 0. In the following, I is fixed at I = 0.1,

which is so small that each neuron can not fire without the fluctuation ηi(t). Using the

binary factor xi, the input-overlap m
µ
in, which measures the correlation between the pattern

ξµ = (ξµ1 , ξ
µ
2 , · · · , ξµN) and the external input I(t) = (I1(t), I2(t), · · · , IN(t)), is defined as

mµ
in =

1

Na(1− a)
N∑

i=1

(ξµi − a)(xi − a). (7)

III. FLUCTUATION-INDUCED MEMORY RETRIEVAL

Following the above configurations, numerical simulations are carried out for N = 200,

p = 3, and a = 0.5. Without loss of generality, the pattern ξ1 can be defined as

ξ1i =




1 1 ≤ i ≤ 100

0 otherwise
, (8)

and the pattern ξ2 and ξ3 are determined randomly following the probability density function

(4). The external input is derived by determining the binary factors xi randomly so that

the input-overlap m1
in with the pattern ξ1 takes 0.5. A typical time series of u1(t) for the

fluctuation intensity D = 0.001 is shown in Fig. 1, where the fluctuation around ueq and the

two firings are observed. To measure the correlation between the pattern ξµ and the time

series ui(t) (i = 1, 2, · · · , N), ui(t) is transformed into the binary series yi(t) ∈ {0, 1}. Firstly,
let us define the firing time of the i-th neuron as the time when ui(t) exceeds an arbitrary
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FIG. 1: A typical time series of u1(t) for N = 200, p = 3, a = 0.5, and D = 0.001. The fluctuation

around ueq and the two firings are observed.

threshold θ, and we set θ = 0 in the following. Then the time series ui(t) is transformed

into the binary series

yi(t) =




1 t < tfi + d

0 otherwise
, (9)

where tfi is the latest firing time of i-th neuron at time t, and the parameter d is set close

to the characteristic width of the output pulse and d = 4 is used in the following. Then the

output-overlapmµ
out between the pattern ξµ and the binary series y = (y1(t), y2(t), · · · , yN(t))

is defined as

mµ
out =

1

Na(1− a)
N∑

i=1

(ξµi − a)(yi − a). (10)

The firing times of all the neurons for the fluctuation intensity D = 0.001 are shown in

Fig. 2 (a), and it is observed that all the neurons are firing randomly. The output-overlap

m1
out with the pattern ξ1 obtained from the time series in Fig. 2 (a) is shown in Fig. 2 (b).

It is observed that m1
out fluctuates around 0, so it can be concluded that the retrieval of the

pattern ξ1 fails.

The firing times of all the neurons for D = 0.002 are shown in Fig. 3 (a). It is observed

that all the neurons seem to fire randomly at small t, but at t ∼ 40, the neurons which

store 1’s for the pattern ξ1 start to fire periodically and synchronously. And in Fig. 3 (b),

the output-overlap m1
out increases to about 0.8 at t ∼ 40, so in this case the retrieval of the

pattern ξ1 is successful.

The results of the simulation for D = 0.004 are shown in Fig. 4. The periodic and

synchronous firings are observed again, but the neurons which store 0’s for pattern ξ1 also
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FIG. 2: The result of numerical simulation, (a) the firing times of all the neurons and (b) the

output-overlap m1
out with the pattern ξ1, for N = 200, p = 3, a = 0.5, and D = 0.001. All the

neurons are firing randomly, so the retrieval of the pattern ξ1 fails.

fire with high firing rates due to the large fluctuation intensity, so the output-overlap is lower

than the case of D = 0.002.

In Fig. 5, the output-overlap m1
out at a sufficient large t is plotted against the fluctuation

intensity D for the input-overlap m1
in = 0.8, 0.6, and 0.1. The other parameters are identical

with the previous cases. For m1
in = 0.8 and 0.6, the output-overlap m1

out increases with

the increase of the fluctuation intensity D, and it decreases with the increase of D over the

optimal intensity D0 ∼ 0.0015. This phenomenon is similar to so-called stochastic resonance,

where a weak input signal is enhanced by its background fluctuation and observed in many

nonlinear systems [20–22]. For m1
in = 0.1, the retrieval of pattern ξ1 fails for any value of D.

For the fixed fluctuation intensity D = 0.002, the numerically obtained basin of attraction

is shown as a function of the loading rate α = p/N in Fig. 6. For each loading rate α, two

points are plotted, namely, the upper is the equilibrium value of the output-overlap m1
out,
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FIG. 3: The result of numerical simulation, (a) the firing times of all the neurons and (b) the

output-overlap m1
out with the pattern ξ1, for N = 200, p = 3, a = 0.5, and D = 0.002. The

retrieval of the pattern ξ1 is successful.

and the lower is the minimum input-overlapm1
in which gives the successful memory-retrieval.

For α < 0.02, the standard deviations shown by the error bars are relatively small, but for

α ≥ 0.02, they take larger values, that is, the memory-retrieval states are destabilized. So

it can be concluded that the storage capacity αc is about 0.02. For further discussions,

theoretical analyses of the associative memory [16, 17] are needed.

IV. THEORETICAL ANALYSIS OF FLUCTUATION-INDUCED MEMORY RE-

TRIEVAL

A. Fluctuation-induced memory retrieval

In this section, we give the qualitative explanation for the fluctuation-induced memory

retrieval. In the following, the system with p = 1 is considered for simplicity. Let us define
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FIG. 4: The result of numerical simulation, (a) the firing times of all the neurons and (b) the

output-overlap m1
out with the pattern ξ1, for N = 200, p = 3, a = 0.5, and D = 0.004. The neurons

which store 0’s for pattern ξ1 fire with high firing rates due to the large fluctuation intensity, so

the output-overlap is lower than the case of D = 0.002.
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FIG. 5: The output-overlap m1
out against the fluctuation intensity D for m1

in = 0.8, 0.6, and 0.1

with N = 200, p = 3, and a = 0.5. Stochastic resonance-like phenomenon is observed for m1
in = 0.8

and 0.6.
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FIG. 6: The basin of attraction for N = 200, D = 0.002, and a = 0.5. The error bar denotes the

standard deviation for ten samples. The storage capacity is estimated to be about 0.02.

the set of indices of neurons which store 0’s in the pattern ξµ = (ξµ1 , ξ
µ
2 , · · · , ξµN) as Gµ(0),

and the set of indices of neurons which store 1’s in the pattern ξµ as Gµ(1). The input Ki

injected to the i-th neuron is written as

Ki = ηi for i ∈ G1(0), (11)

Ki =
w

Na(1− a)
N∑

j=1

(ξ1j − a)(uj − ueq) + I + ηi, (12)

=
w

Na(1− a)


 ∑

j∈G1(0)

(ξ1j − a)(uj − ueq) +
∑

j∈G1(1)

(ξ1j − a)(uj − ueq)


 + I + ηi, (13)

= w


− 1

N(1− a)
∑

j∈G1(0)

(uj − ueq) +
1

Na

∑
j∈G1(1)

(uj − ueq)


 + I + ηi, (14)

= w
(
−〈uj − ueq〉j∈G1(0) + 〈uj − ueq〉j∈G1(1)

)
+ I + ηi for i ∈ G1(1), (15)

where 〈·〉j∈A denotes the ensemble average over the set A. Note that the external input I(t)

is injected only to the neurons in G1(1) for simplicity. Because noises for different neurons

are statistically independent, the neurons in G1(0) fire randomly and independently. On the

other hand, the neurons in G1(1) have the common input w〈uj − ueq〉j∈G1(1), so their firings

may be correlative each other. In the following, we treat this dynamics.

Let us consider an ensemble of N neurons with the uniform coupling term w〈uj(t−dp)−
ueq〉j and the external input I + ηi, namely, Eqs. (1) and (2) with Jij = w/N and Ii(t) = I.

Note that this model approximates the dynamics of neurons in G1(1), and that the term

〈uj − ueq〉j∈G1(0) in Eq. (15) is neglected for simplicity. Then let us consider the number
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of neurons which fire in the narrow time interval [t, t + ∆] and denote it by Nzn. If an

output pulse of FN neuron has width d and height M , the perturbation with width ∼ d

and height ∼ wMzn is injected to all the neurons with the delay dp. Let us denote the

number of neurons which fire with this perturbation in the time interval [t+ dp, t+ dp +∆]

by Nzn+1, and assume the relation zn+1 = g(zn). If the FN neuron acts like a threshold

device with the threshold I0, g(zn) for noise intensity D = 0 is a step function which takes

1 for wMzn + I ≥ I0 and takes 0 otherwise. It is difficult to derive g(zn) for D �= 0, but it

is expected to be a monotonic increase function of zn.

Numerically obtained g(zn) for D = 0.0005, 0.001, and 0.0012 with N = 100 and I = 0.1

is plotted in Fig. 7. The width ∆ of time interval is set at the same size with d of output
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FIG. 7: Numerically obtained g(zn) for D=0.0005, 0.001, and 0.0012 with N = 100 and I = 0.1.

A saddle-node bifurcation at D ∼ 0.001 is observed.

pulse. It is observed that the number of intersecting points of y = g(z) with y = z is 3

for D < D0 ∼ 0.001, and 1 for D > D0, the intersecting point z ∼ 1 is always stable for

any D, and that the other intersecting points are generated by a saddle-node bifurcation at

D = D0. The schematic diagram is shown in Fig. 8. Thus, for D > D0, any zn converges

to the stable fixed point zn ∼ 1, which means that all the neurons fire synchronously and

periodically with the period dp for D > D0.

B. The dependence of mout on D

In this section, the dependence of mout on D is investigated for D > D0. Assume that the

neurons in G1(1) fire synchronously and periodically with the period dp and that the neurons
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FIG. 8: Schematic diagram of bifurcation of g(z).

in G1(0) are firing randomly with firing rate depending on D as rG0 = r0 exp(−C/D), where

r0 and C are constants. Note that this firing rate is the inverse of the first passage time for

a particle in a double well potential to cross the potential barrier [36], and introduced only

for simplicity.

The distribution of the ratio k of the neurons in G0(0) which fire in a time interval of

width d, and its average 〈k〉 are written as

P (k) = N(1−a)CN(1−a)k(1− exp(−rG0d))
N(1−a)k(exp(−rG0d))

N(1−a)(1−k), (16)

〈k〉 = 1− exp(−rG0d). (17)

With 〈k〉, mout is approximately given by

m1
out =

1

Na(1− a)
∑

i

(ξ1i − a)(yi − a), (18)

=
1

Na(1− a)((1− a)(1− a)Na + (−a)(1− a)N(1− a)〈k〉
+(−a)(−a)N(1 − a)(1− 〈k〉)), (19)

= exp
(
−r0d exp

(
−C
D

))
. (20)

Note that Eq. (20) decreases monotonically with the increase of D. This gives the quanti-

tative description of the decrease of mout for D ≥ D0.
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V. ALTERNATE RETRIEVAL OF TWO PATTERNS

In our network, the memory is represented by the synchronized periodic firings of the

neurons which store 1’s, and this period is determined by the propagational time delay dp.

So the system has a large degree of freedom along the time axis for the large dp, that is,

during the time between the firings by one pattern, the system can retrieve other patterns,

in other words, this system can process some “tasks” simultaneously.

To see this ability, numerical simulations are performed for N = 200, p = 3, a = 0.5, and

dp = 6.5. Note that the propagational time delay dp is about twice as long as dp = 3 used

in above sections. For simplicity, the pattern ξ1 and ξ2 are defined as

ξ1i =




1 1 ≤ i ≤ 100

0 otherwise
, (21)

ξ2i =




1 51 ≤ i ≤ 150

0 otherwise
, (22)

respectively, and the pattern ξ3 is determined randomly following the probability density

function (4). The external input I(t) is defined so that the binary factor xi suffices

xi =




1 51 ≤ i ≤ 100

0 otherwise
. (23)

Note that both input-overlaps m1
out and m

2
out take 0.5.

For the fluctuation intensity D = 0.001, the firing times of all the neurons and the output-

overlaps m1
out and m

2
out are plotted in Fig. 9 (a) and Fig. 9 (b) respectively. It is observed

that the retrievals of both pattern ξ1 and pattern ξ2 fail with this fluctuation intensity.

The firing times of all the neurons for the fluctuation intensity D = 0.002 are plotted

in Fig. 10 (a). It is shown that the two patterns ξ1 and ξ2 are retrieved alternatively,

accompanied with the time difference dp/2. The output-overlaps m1
out and m2

out derived

from the data in Fig. 10 (a) are shown in Fig. 10 (b). The alternate retrieval of two

patterns is observed as the anti-phase oscillations of two output-overlaps.

The results of the numerical simulation for D = 0.004 are shown in Fig. 11. In Fig. 11

(a), it is observed that all the neurons are firing with high firing rates, so the retrievals of

both pattern ξ1 and pattern ξ2 fail as in Fig. 11 (b).
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FIG. 9: The results of numerical simulation, (a) the firing times and (b) the output-overlaps, for

N = 200, p = 3, a = 0.5, D = 0.001, and dp = 6.5. The retrievals of both pattern ξ1 and pattern

ξ2 fail.

From above results, it can be concluded that our system has an ability to retrieve two

patterns simultaneously as the alternate firings of particular neurons, and the fluctuation

intensity D plays a significant role to realize this dynamics.

VI. CONCLUSIONS AND DISCUSSIONS

The associative memory in a pulse neural network composed of the FitzHugh-Nagumo

neurons with the propagational time delay is investigated. In this network, the memory is

represented by the synchronous periodic firings of the particular neurons. It is found that

the memory retrieval in this system is achieved by adding the fluctuation, and there exists

an optimal fluctuation intensity for the memory retrieval. This phenomenon is similar to so-

called stochastic resonance (SR), where the weak input signal is enhanced by its background

fluctuation. Though there is no time-dependent input in our model, the mechanism of
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FIG. 10: The results of numerical simulation, (a) the firing times and (b) the output-overlaps, for

N = 200, p = 3, a = 0.5, D = 0.002, and dp = 6.5. The alternate retrieval of two patterns is

observed as the anti-phase oscillations of two output-overlaps.

associative memory is driven and enhanced by its background fluctuation. The basin of

attraction of this system is investigated numerically, and its storage capacity is found to

be αc ∼ 0.02. Note that this storage capacity is smaller than those of previous models,

for example, 0.138 for the Hopfield model [37], and 0.038 for the coupled phase oscillators

[38]. But our network has an ability that the previous models do not have, that is, an

ability to retrieve two patterns as the alternate firings of the particular neurons. While such

dynamics as utilizes the degree of freedom along the time axis is proposed by Wang et al.

for the network of bursting neurons [14], our model has the properties that the component

of the memory is the single pulse of each neuron, and that the fluctuation in the system is

indispensable.

As for the fluctuation in the neural system, SR in a single neuron is often investigated,

and it is proposed that the sensory system may utilize SR in order to improve the sensitivity
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FIG. 11: The results of numerical simulation, (a) the firing times and (b) the output-overlaps, for

N = 200, p = 3, a = 0.5, D = 0.004, and dp = 6.5. All the neurons are firing with high firing rates,

so the retrievals of both pattern ξ1 and pattern ξ2 fail.

to the external input. Our results show that the fluctuation can play more functional role

in higher order dynamics in the brain, like the memory retrieval in the associative memory.

Though Collins et al. propose that the regulating of the fluctuation intensity is not required

for the network of large number of neurons [33], but in our dynamics, it is required to

regulate the fluctuation intensity to the optimal intensity (see Fig. 5). It might be difficult

to regulate the fluctuation intensity if the fluctuation in our model is considered to be the

thermal noise in the neural system, but that might be naturally performed if the fluctuation

in our system represents the sum of enormous pulses from the pre-synaptic neurons [29–31].

In such case, the dynamics of the system might be controlled by its background fluctuation

[34].
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