微分方程式論 (12) 微分方程式の解のグラフ (解答編)

担当: 金丸隆志

学籍番号:

氏名:

[問題 1]

摩擦ありのばねの運動方程式

$$x'' + 2x' + 5x = 0$$

を考える $(m=1, \delta=2, k=5)$ ということ)。

- (a) 一般解を求めよ。
- (b) 時刻 t = 0 で x = 1, dx/dt = 1 を満たす解を求 め、そのグラフを $0 < t < 2\pi$ の範囲で描け。

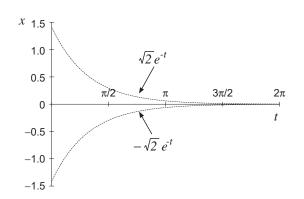


図 1: 問題 1(b) グラフ記入欄。 ヒントとして $\sqrt{2}e^{-t}$ と $-\sqrt{2}e^{-t}$ のグラフを示した。

[問題1解説]

(a) 解法は資料 (8) を参照すること。

$$x = e^{-t}(C_1\cos 2t + C_2\sin 2t)$$

記の式に代入する。

$$x = e^{-t}(C_1 \cos 2t + C_2 \sin 2t)$$

$$x' = -e^{-t}(C_1 \cos 2t + C_2 \sin 2t)$$

$$+e^{-t}(-2C_1 \sin 2t + 2C_2 \cos 2t)$$

それにより $C_1 = C_2 = 1$ が計算できるので、 $x = e^{-t}(\cos 2t + \sin 2t)_{\circ}$

グラフを描くためには、 $\cos 2t + \sin 2t = \sqrt{2} \sin \left(2t + \frac{\pi}{4}\right)$ と変形する必要がある。このとき用いたのは高校数学 で学ぶ三角関数の合成公式である。

$$A\sin x + B\cos x = \sqrt{A^2 + B^2}\sin(x + \alpha)$$
 たださし
$$\sin \alpha = B/\sqrt{A^2 + B^2}$$

$$\cos \alpha = A/\sqrt{A^2 + B^2},$$

これを用いると、解は $x = \sqrt{2}e^{-t}\sin\left(2t + \frac{\pi}{4}\right)$ と書け る。このとき、グラフは $\sqrt{2}e^{-t}$ のグラフと $\sin\left(2t+\frac{\pi}{4}\right)$ のグラフの積と考えるとグラフを描きやすい。

解答欄には $\sqrt{2}e^{-t}$ のグラフがあらかじめ描かれて いるので、ここに $\sin\left(2t+\frac{\pi}{4}\right)$ を重ねて描くと下図 のようになる。グラフを描くときは、 $\sin\left(2\left(t+\frac{\pi}{8}\right)\right)$ と変形することに注意。ポイントは「周期 π であり、

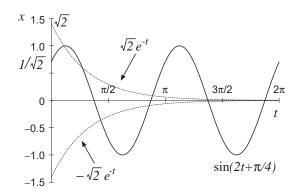


図 2: $\sqrt{2}e^{-t}$ と $\sin\left(2t+\frac{\pi}{4}\right)$ のグラフ

 $t = -\frac{\pi}{8}$ の位置が原点であるかのように \sin のグラフ を描く」ことである。

このグラフを元に、 $\int \sin O$ 値が +1 のときに $\sqrt{2}e^{-t}$ のグラフと一致する」、 $\lceil \sin O$ 値が -1 のときに $-\sqrt{2}e^{-t}$ (b) 初期条件「時刻 t=0 で x=1, dx/dt=1」を下 のグラフと一致する」などに注意してグラフを描くと 下図のようになり、これが解答である。ばねと重りの 減衰振動のグラフであることがわかる。

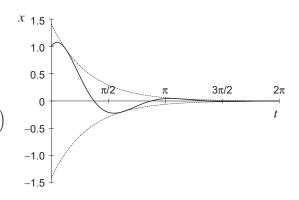


図 3: [問題 1](b) 解答

[問題 2]

摩擦ありのばねに周期的な力が加わった運動方程式

$$x'' + 2x' + 5x = \cos t$$

を考える。

- (a) 一般解を求めよ。[問題 1](a) の結果も使うこと。
- (b) 時刻 t=0 で x=dx/dt=0 を満たす解を求め よ。さらに、この解のグラフを $2\pi < t < 4\pi$ の範囲で [問題 1](b) と同様に描け。

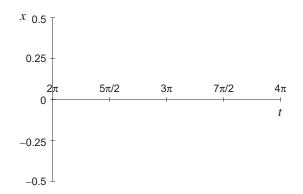


図 4: [問題 2](b) グラフ記入欄

[問題2解説]

(a) 以下に簡略化した解法を示す。詳細な解法は資料 (11) を参照すること。

斉次方程式の一般解は [問題 1](a) と同じである。こ こで $x_{\text{特別}} = A\cos t + B\sin t$ という形の解を仮定する。 問題の微分方程式に代入すると、A=1/5, B=1/10

よって $x_{\text{特別}} = \frac{1}{5}\cos t + \frac{1}{10}\sin t$ という特別解を得 る。斉次の一般解と合わせると

 $\frac{x=\frac{1}{5}\cos t+\frac{1}{10}\sin t+e^{-t}(C_1\cos 2t+C_2\sin 2t)}{\text{(b)} 初期条件「時刻 <math>t=0$ で x=dx/dt=0」を下記 に代入する。

$$x = \frac{1}{5}\cos t + \frac{1}{10}\sin t + e^{-t}(C_1\cos 2t + C_2\sin 2t)$$

$$x' = -\frac{1}{5}\sin t + \frac{1}{10}\cos t - e^{-t}(C_1\cos 2t + C_2\sin 2t)$$

$$+e^{-t}(-2C_1\sin 2t + 2C_2\cos 2t)$$

これにより $C_1 = -1/5$, $C_2 = -3/20$ が得られるので、 $x = \frac{1}{5}\cos t + \frac{1}{10}\sin t + e^{-t}(-\frac{1}{5}\cos 2t - \frac{3}{20}\sin 2t)$

グラフであるが、[問題 1](b) より $t \ge 2\pi$ では e^{-t} が掛けられている項はほぼ 0 に収束することがわか る。そのため、 $x = \frac{1}{5}\cos t + \frac{1}{10}\sin t$ の方のみを描け ば求めるグラフになる。

このとき、 $x = \frac{\sqrt{5}}{10}\sin(t+\alpha)$ (ただし $\sin\alpha = 2/\sqrt{5}$, $\cos \alpha = 1/\sqrt{5}$) となる。 α という角度を明示的に求め ることはできないが、下図の作図によりおおよそのイ メージがつかめる。以上より、描くべきグラフは「周

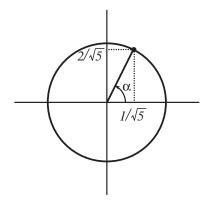


図 5: [問題 2](b) α の値を目安を知るための作図

期 2π であり、 $t = -\alpha$ を原点と思って描いた $\sin \sigma$ $\sqrt{5}/10$ 倍」のグラフとなる。

グラフは次の通り。

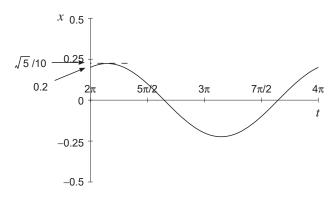


図 6: [問題 2](b) 解答