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Abstract 

 
There is currently much interest in examining climatic tipping points, to see if it is feasible to predict 
them in advance. Using techniques from bifurcation theory, recent work looks for a slowing down of 
the intrinsic transient responses, which is predicted to occur before an instability is encountered. This is 
done, for example, by determining the short-term autocorrelation coefficient ARC(1) in a sliding 
window of the time series: this stability coefficient should increase to unity at tipping. Such studies have 
been made both on climatic computer models and on real paleoclimate data preceding ancient tipping 
events. The latter employ re-constituted time-series provided by ice cores, sediments, etc, and seek to 
establish whether the actual tipping could have been accurately predicted in advance. One such example 
is the end of the Younger Dryas event, about 11,500 years ago, when the Arctic warmed by 7ºC in 50 
years. A second gives an excellent prediction for the end of 'greenhouse' Earth about 34 million years 
ago when the climate tipped from a tropical state into an icehouse state, using data from tropical Pacific 
sediment cores. This prediction science is very young, but some encouraging results are already being 
obtained. Future analyses, relevant to geo-engineering, will clearly need to embrace both real data from 
improved monitoring instruments, and simulation data generated from increasingly sophisticated 
predictive models. 
 

1. Introduction 
 

The geo-engineering proposals assessed in this book aim to combat global warming by proactively 
manipulating the climate. All authors are agreed that these are indeed risky procedures. They would 
only be actively pursued if all else had failed, and there was a well-researched consensus that to do 
nothing would lead rapidly to an environmental catastrophe of major proportions. We should note as 
well that if the climate is thought to have already passed a bifurcation point, one has to consider 
carefully whether it is in fact too late to usefully apply geoengineering techniques, because an 
irreversible transition may already be underway. Biggs et al (2009) study an analogous problem in their 
fisheries model: after tipping how fast does one have to implement measures to jump back to the 
previous state? 
   The emergence of a consensus would inevitably rely on scientific projections of future climatic events, 
central to which would be sudden, and usually irreversible features that are now called tipping points. 
The Intergovernmental Panel on Climate Change (IPCC, 2007) made some brief remarks about abrupt 
and rapid climate change, but more recently Lenton et al (2008), have sought to define these points 
rigorously. 
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   The physical mechanisms underlying these tipping points are typically internal positive feedback 
effects of the climate system. Since any geo-engineering measure will have to rely strongly on natural 
positive feedback mechanisms to amplify its effect, the proximity to a tipping point is of real 
significance to the engineers planning the intervention.  
   Table 1 shows a list of candidates proposed by Lenton et al (2008), and the possible effects of their 
tipping on the global climate. All of these subsystems of the climate have strong internal positive 
feedback mechanisms. Thus, they have a certain propensity for tipping and are susceptible to input 
(human or otherwise). 
 

Tipping element  Feature, F 
(change) 

Control parameter, µ  µcrit 
Global 
warming

Transition 
time, T Key impacts 

Arctic summer sea-
ice 

 Areal 
extent (-) 

Local  ∆Tair, ocean 
heat transport 

?? +0.5 to 
+2ºC 

 ~ 10 yr 
(rapid) 

Amplified warming, 
ecosystem change 

Greenland ice sheet 
(GIS) 

 Ice volume 
(-) Local  ∆Tair ~+3ºC +1 to 

+2ºC 
>300 yr 
(slow) 

Sea level +2 to +7m

West antarctic ice 
sheet (WAIS) 

 Ice volume 
(-) 

Local  ∆Tair or, less 
∆Tocean 

+5 to 
+8ºC 

+3 to 
+5ºC 

>300 yr 
(slow) 

Sea level +5m 

Atlantic thermohaline 
circulation 

 Overturning 
(-) 

Freshwater input to 
North Atlantic 

+0.1 to 
+0.5 Sv

+3 to 
+5ºC 

~100 yr 
(gradual) 

Regional cooling, 
sea level, ITCZ shift

El Niño Southern 
oscillation 

 Amplitude 
(+) 

Thermocline depth, 
sharpness in EEP 

?? +3 to 
+6ºC 

~100 yr 
(gradual) 

Drought in SE Asia 
and elsewhere 

Indian summer 
monsoon (ISM) 

 Rainfall (-) Planetary albedo over 
India 

0.5 N/A ~1yr 
(rapid) 

Drought, decreased 
carrying capacity 

Sahara/Sahel and W.-
African monsoon 

 Vegetation 
fraction (+) 

Precipitation 100 
mm/yr

+3 to 
+5ºC 

~10 yr 
(rapid) 

Increased carrying 
capacity 

Amazon rain-forest  Tree 
fraction (-) 

Precipitation, dry 
season length 

1,100 
mm/yr

+3 to 
+4ºC 

~50 yr 
(gradual) 

Biodiversity loss, 
decreased rainfall 

Boreal forest  Tree 
fraction (-) 

Local  ∆Tair  ~+7ºC +3 to 
+5ºC 

~50 yr 
(gradual) 

Change in type of 
the ecosystem 

 
Table 1 Summary of Lenton's Tipping Elements, namely climate subsystems that are likely to be candidates for future 

tipping with relevance to political decision making. In column 2, the possibility of there being an underlying bifurcation is 
indicated as follows: black = high, grey = medium, white = low. Notice that in column four EEP denotes the Eastern 

Equatorial Pacific and in the last column ITCZ denotes the Intertropical Convergence Zone. This list will be discussed in 
greater detail in §5. 

    
   As column 2 shows the primary deterministic mechanisms behind several of the listed tipping events 
are so-called bifurcations, special points in the control parameter space (see columns 4 and 5) at which 
the deterministic part of the dynamical system governing the climate changes qualitatively (for example, 
the currently attained steady state disappears). In §3 we review possible bifurcations and classify them 
into three types, safe, explosive and dangerous. Almost universally these bifurcations have a precursor: 
in at least one mode all feedback effects cancel at the linear level, which means that the system is 
slowing down, and the local (or linear) decay rate (LDR) to the steady state decreases to zero. This 
implies that near tipping points geo-engineering can be expected to be most effective (and most 
dangerous) because the climate system is most susceptible to disturbances. 
   The analysis and prediction of tipping points of climate subsystems is currently being pursued in 
several streams of research, and we should note in particular the excellent book by Marten Scheffer 
about tipping points in 'Nature and Society', which includes ecology and some climate studies, due to 
appear this year (Scheffer, 2009).  
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   Most of the research is devoted to creating climate models from first principles, tuning and initializing 
these models by assimilating geological data, and then running simulations of these models to predict 
the future. Climate models come in varying degrees of sophistication and realism, more complex ones 
employing up to 3×108 variables (Dijkstra, 2008). Predictions do not only rely on a single ‘best model’ 
starting from the ‘real initial conditions’. Typically, all qualified models are run from ensembles of 
initial conditions and then statistical analysis over all generated outcomes is performed (IPCC, 2007).  
   An alternative to the model and simulate approach (and in some sense a short-cut) is to realize that 
mathematically some of the climate-tipping events correspond to bifurcations (see §3 for a discussion), 
and then to use time-series analysis techniques to extract precursors of these bifurcations directly from 
observational data. This method still benefits from the modelling efforts because simulations generated 
by predictive models allow analysts to hone their prediction techniques on masses of high quality data, 
with the possibility of seeing whether they can predict what the computer eventually displays as the 
outcome of its run. Transferring these techniques to real data from the Earth itself is undoubtedly 
challenging. Still, bifurcation predictions directly from real time series will be a useful complement to 
modelling from first principles because they do not suffer from all the many difficulties of building and 
initializing reliable computer models. Our review discusses the current state of bifurcation predictions 
in climate time series, focussing on methods, introduced by Held & Kleinen (2004) and Livina & 
Lenton (2007), for the analysis of the collapse of the global conveyor belt of oceanic water, the 
thermohaline circulation (THC). This conveyor is important, not so much for the water transport, per se, 
but because of the heat and salt that it redistributes. 
   The paper by Livina & Lenton (2007) is particularly noteworthy in that it includes what seems to be 
the first bifurcational predictions using real data, namely the Greenland ice-core paleo-temperature data 
spanning the time from 50,000 years ago to the present. The unevenly spaced data comprised 1586 
points and their DFA-propagator (this quantity reaches +1 when the local decay rate vanishes; see §4.1) 
was calculated in sliding windows of length 500 years. The results are shown in Figure 1, and the rapid 
warming at the end of the Younger Dryas event, around 11,500 years before the present is spectacularly 
anticipated by an upward trend in the propagator, which is heading towards its critical value of +1 at 
about the correct time. 

 
 

Figure 1 Results of Livina & Lenton (2007) (a) Greenland ice-core (GISP2) paleo-temperature with an unevenly spaced 
record, visible in the varying density of symbols on the curve. The total number of data points is N = 1586. In (b) the DFA1-

propagator is calculated in sliding windows of length 500 points and mapped into the middle points of the windows. A 
typical sliding window ending near the tipping is shown. Thus, from a prediction point of view the propagator estimates 

would end at point A (see remarks at the end of §4.1). 
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   In a second notable paper, Dakos et al (2008) systematically estimated the LDR for real data in their 
analysis of eight ancient tipping events via reconstructed time series. These are: 
(a) the end of the greenhouse Earth about 34 million years ago when the climate tipped from a  tropical 
state (which had existed for hundreds of millions of years) into an icehouse state with ice caps, using 
data from tropical Pacific sediment cores, 
(b) the end of the last glaciation, and the ends of three earlier glaciations, drawing data from the 
Antarctica Vostok ice core, 
(c) the Bølling-Alleröd transition which was dated about 14,000 years ago, using data from the 
Greenland GISP2 ice core,  
(d) the end of the Younger Dryas event about 11,500 years ago when the Arctic warmed by 7ºC in 50 
years, drawing on data from the sediment of the Cariaco basin in Venezuela, 
(e) the desertification of North Africa when there was a sudden shift from a savanna-like state with 
scattered lakes to a desert about 5,000 years ago, using the sediment core from ODP Hole 658C, off the 
west coast of Africa. 
   In all of these cases, the dynamics of the system slow down before the transition. This slow-down was 
revealed by a short-term autocorrelation coefficient, ARC(1), of the time series which examines to what 
extent the current point is correlated to preceding points and gives an estimate of the LDR. It is 
expected to increase towards unity at an instability, as described in §4. 
 

2. Climate Models as Dynamical Systems  
 
Thinking about modelling is a good introduction to the ideas involved in predicting climate change, so 
we will start from this angle. Now, to an applied mathematician, the Earth's climate is just a very large 
dynamical system that evolves in time. Vital elements of this system are the Earth itself, its oceans and 
atmosphere, and the plants and animals that inhabit it (including, of course, ourselves). In summary, the 
five key components are often listed succinctly as atmosphere, ocean, land, ice, and biosphere. Arriving 
as external stimuli to this system are sunlight and cosmic rays, etc: these are usually viewed as driving 
forces, often just called forcing. In modelling the climate we need not invoke the concepts of quantum 
mechanics (for the very small) or relativity theory (for the very big or fast). 
   So one generally considers a system operating under the deterministic rules of classical physics, 
employing, for example, Newton's Laws for the forces, and their effects, between adjacent large blocks 
of sea water or atmosphere. A block in the atmosphere might extend 100 km by 100 km horizontally 
and 1 km vertically, there being perhaps 20 blocks stacked vertically over the square base: for example, 
in a relatively low resolution model, Selten et al (2004) use blocks of size 3.75º in latitude and 
longitude with 18 blocks stacked vertically in their simulation. (For current high resolution models see 
IPCC (2007)). So henceforth in this section, we will assume that the climate has been modelled 
primarily as a large deterministic dynamical system evolving in time according to fixed rules. For 
physical, rather than biological entities, these rules will usually relate to adjacent (nearest-neighbour) 
objects at a particular instant of time (with no significant delays or memory effects). It follows that our 
climate model will have characteristics in common with the familiar mechanical systems governed by 
Newton's laws of motion. From a given set of starting conditions (positions and velocities of all the 
components, for example), and external deterministic forcing varying in a prescribed fashion with time, 
there will be a unique outcome as the model evolves in time. Plotting the time-evolution of these 
positions and velocities in a conceptual multi-dimensional phase space is a central technique of 
dynamical systems theory. See Kantz & Schreiber (2003) for the relevance of phase space to time-series 
analysis. 
   Despite the unique outcome, the results of chaos theory remind us that the response may be essentially 
unknowable over time scales of interest because it can depend with infinite sensitivity on the starting 
conditions (and on the numerical approximations used in a computer simulation). To ameliorate this 
difficulty, weather and climate forecasters now often make a series of parallel simulations from an 
ensemble of initial conditions which are generated by adding different small perturbations to the  
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original set: and they then repeat all of this on different models. This ensemble approach, pioneered by 
Tim Palmer and others, is described by Buizza, et al (1998) and Sperber, et al (2001). 
   Mechanical systems are of two main types. First is the idealised closed conservative (sometimes 
called Hamiltonian) system in which there is no input or output of energy, which is therefore conserved. 
These can be useful in situations where there is very little 'friction' or energy dissipation, such as when 
studying the orbits of the planets. A conservative system, like a pendulum with no friction at the pivot 
and no air resistance, tends to move for ever: it does not exhibit transients, and does not have any 
attractors. Second, is the more realistic dissipative system where energy is continuously lost (or 
dissipated). An example is a real pendulum which eventually comes to rest in the hanging-down 
position, which we call a point attractor. A more complex example is a damped pendulum driven into 
resonance by steady harmonic forcing from an AC electromagnet: here, after some irregular transient 
motion, the pendulum settles into a stable 'steady' oscillation, such as a periodic attractor or a chaotic 
attractor. In general, a dissipative dynamical system will settle from a complex transient motion to a 
simpler attractor as the time increases towards infinity. These attractors, the stable steady states of the 
system, come in four main types: the point attractors, the periodic attractors, the quasi-periodic 
(toroidal) attractors and the chaotic attractors (Thompson & Stewart, 2002). 
   Climate models will certainly not be conservative, and will dissipate energy internally, though they 
also have some energy input: they can be reasonably expected to have the characteristics of the well-
studied dissipative systems of (for example) engineering mechanics, and are, in particular, well known 
to be highly nonlinear.  

3. Concepts from Bifurcation Theory 
 
A major component of nonlinear dynamics is the theory of bifurcations, these being points in the slow 
evolution of a system at which qualitative changes or even sudden jumps of behaviour can occur. 
   In the field of dissipative dynamics co-dimension-1 bifurcations are those events that can be 'typically' 
encountered under the slow sweep of a single control parameter. A climate model will often have (or be 
assumed to have) such a parameter under the quasi-static variation of which the climate is observed to 
gradually evolve on a 'slow' timescale. Slowly varying parameters are external influences that vary on 
geological time-scales, for example, the obliquity of the Earth's orbit. Another common type of slowly 
varying parameter occurs if one models only a subsystem of the climate, for example, oceanic water 
circulation. Then the influence of an interacting subsystem (for example, freshwater forcing from 
melting ice sheets) acts as a parameter that changes slowly over time. 
   An encounter with a bifurcation during this evolution will be of great interest and significance, and 
may give rise to a dynamic jump on a much faster timescale. A complete list of the (typical) co-
dimension-1 bifurcations, to the knowledge of the authors at the time of writing, is given by Thompson 
& Stewart (2002). It is this list of local and global bifurcations that is used to populate Tables 2 to 5. 
The technical details and terminology of these tables need not concern the general reader, but they do 
serve to show the vast range of bifurcational phenomena that can be expected even in the simplest 
nonlinear dynamical systems, and certainly in climate models as we see in §6.  
   A broad classification of the co-dimension-1 attractor bifurcations of dissipative systems into safe, 
explosive and dangerous forms (Thompson, et al 1994) is illustrated in Tables 2 to 4 and Figure 2, while 
all are summarized in Table 5 together with notes on their precursors. It must be emphasized that these 
words are used in a technical sense. Even though in general the safe bifurcations are often literally safer 
than the dangerous bifurcations, in certain contexts this may not be the case. In particular, the safe 
bifurcations can still be in a literal sense very dangerous: as when a structural column breaks at a 'safe' 
buckling bifurcation! 
   Note carefully here that when talking about bifurcations we use the word 'local' to describe events that 
are essentially localised in phase space. Conversely we use the word 'global' to describe events that 
involve distant connections in phase space. With this warning, there should be no chance of confusion 
with our use, elsewhere, of the word 'global' in its common parlance as related to the Earth. 
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   In Tables 2-4 we give the names of the bifurcations in the three categories, with alternative names 
given in parentheses. We then indicate the change in the type of attractor that is produced by the 
bifurcation, such as a point to a cycle, etc. Some of the attributes of each class (safe, explosive or 
dangerous) are then listed at the foot of each table. Among these attributes, the concept of a basin 
requires some comment here. In the multi-dimensional phase space of a dissipative dynamical system 
(described in §2) each attractor, or stable state, is surrounded by a region of starting points from which a 
displaced system would return to the attractor. The set of all these points constitutes the basin of 
attraction. If the system were displaced to, and then released from any point outside the basin, it would 
move to a different attractor (or perhaps to infinity). Basins also undergo changes and bifurcations, but 
for simplicity of exposition in this brief review we focus on the more common attractor bifurcations. 
 
------------------------------------------------------------------------------------------------------------------------------------------------------ 

Safe Bifurcations 
 

 (a) Local Supercritical Bifurcations 
  1.  Supercritical Hopf       Point to cycle  
  2.  Supercritical Neimark-Sacker (secondary Hopf)   Cycle to torus 
  3.  Supercritical Flip (period-doubling)    Cycle to cycle  
 (b) Global Bifurcations 
  4.  Band Merging       Chaos to chaos 
  
 These bifurcations are characterised by the following features: 
 
 SUBTLE: continuous supercritical growth of new attractor path 
 SAFE: no fast jump or enlargement of the attracting set 
 DETERMINATE: single outcome even with small noise 
 NO HYSTERESIS: path retraced on reversal of control sweep 
 NO BASIN CHANGE: basin boundary remote from attractors 
 NO INTERMITTENCY: in the responses of the attractors 

 
Table 2 Safe bifurcations. These include the supercritical forms of the local bifurcations and the less well-known global 

'band merging'. The latter is governed by a saddle-node event on a chaotic attractor. Alternative names are given in brackets. 
 

Explosive Bifurcations 
 
  5.  Flow Explosion (omega explosion, SNIPER)   Point to cycle 
  6.  Map Explosion (omega explosion, mode-locking)   Cycle to torus 
  7.  Intermittency Explosion: Flow     Point to chaos 
  8.  Intermittency Explosion: Map (temporal intermittency)  Cycle to chaos 
  9.  Regular-Saddle Explosion (interior crisis)    Chaos to chaos  
  10. Chaotic-Saddle Explosion (interior crisis)    Chaos to chaos 
 
 These bifurcations are characterised by the following features: 
 
 CATASTROPHIC: global events, abrupt enlargement of attracting set 
 EXPLOSIVE: enlargement, but no jump to remote attractor 
 DETERMINATE: with single outcome even with small noise 
 NO HYSTERESIS: paths retraced on reversal of control sweep 
 NO BASIN CHANGE: basin boundary remote from attractors 
 INTERMITTENCY: lingering in old domain, flashes through the new 
 

Table 3 Explosive bifurcations. These are less common global events, which occupy an intermediate position between the 
safe and dangerous forms. Alternative names are given in brackets. 
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Dangerous Bifurcations 
 
 (a) Local Saddle-Node Bifurcations 
  11. Static Fold (saddle-node of fixed point)    from Point 
  12. Cyclic Fold (saddle-node of cycle)     from Cycle 
 (b) Local Subcritical Bifurcations 
  13. Subcritical Hopf       from Point 
  14. Subcritical Neimark-Sacker (secondary Hopf)   from Cycle 
  15. Subcritical Flip (period-doubling)     from Cycle  
 (c) Global Bifurcations 
  16. Saddle Connection (homoclinic connection)   from Cycle 
  17. Regular-Saddle Catastrophe (boundary crisis)   from Chaos 
  18. Chaotic-Saddle Catastrophe (boundary crisis)   from Chaos 
 
 These bifurcations are characterised by the following features: 
 
 CATASTROPHIC: sudden disappearance of attractor 
 DANGEROUS: sudden jump to new attractor (of any type) 
 INDETERMINACY: outcome can depend on global topology 
 HYSTERESIS: path not reinstated on control reversal 
 BASIN: tends to zero (b), attractor hits edge of residual basin (a, c) 
 NO INTERMITTENCY: but critical slowing in global events 
 

Table 4 Dangerous bifurcations. These include the ubiquitous folds where a path reaches a smooth maximum or minimum 
value of the control parameter, the subcritical local bifurcations, and some global events. They each trigger a sudden jump to 

a remote 'unknown' attractor. In climate studies these would be called tipping points, as indeed might other nonlinear 
phenomena. Alternative names are given in brackets. 

 
 

 
 

Figure 2 Schematic illustration of the three bifurcation types. On the left the control parameter, µ, is plotted horizontally and 
the response, q, vertically. The middle column shows the time series of a response to small disturbances if µ < µcrit. On the 

right we show how the system drifts away from its previously stable steady state if µ > µcrit. The different types of events are 
(from top to bottom) safe (a), explosive (b) and dangerous (c).  
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    In Figure 2 we have schematically illustrated three bifurcations that are co-dimension-1, meaning that 
they can be typically encountered under the variation of a single control parameter, µ, which is here 
plotted horizontally in the left column. The response, q, is plotted vertically. To many people, the most 
common (safe) bifurcation is what is called the supercritical pitchfork or stable-symmetric point of 
bifurcation (Thompson & Hunt, 1973). This was first described by Euler (1744) in his classic analysis 
of the buckling of a slender elastic column, and is taught to engineering students as 'Euler buckling' in 
which the load carried by the column is the control parameter. Poincaré (1885) explored a number of 
applications in astro-physics. In this event, the trivial primary equilibrium path on which the column has 
no lateral deflection (q = 0), becomes unstable at a critical point, C, where µ = µcrit. Passing vertically 
though C, and then curving towards increasing µ, is a stable secondary equilibrium path of deflected 
states, the so-called post-buckling path. The existence of (stable) equilibrium states at values of µ > µcrit 
is why we call the bifurcation a supercritical pitchfork. In contrast, many shell-like elastic structures 
exhibit a dangerous bifurcation with an (unstable) post-buckling path that curves towards decreasing 
values of the load, µ, and is accordingly called a subcritical pitchfork. These two pitchforks are 
excellent examples of safe and dangerous bifurcations, but they do not appear in our lists because they 
are not co-dimension-1 events in generic systems. That the bifurcation of a column is not co-dimension-
1 manifests itself by the fact that a perfectly straight column is not a typical object; any real column will 
have small imperfections, lack of straightness being the most obvious one. These imperfections round 
off the corners of the intersection of the primary and secondary paths (in the manner of the contours of a 
mountain-pass), and destroy the bifurcation in the manner described by catastrophe theory (Poston & 
Stewart, 1978; Thompson, 1982). We shall see a subcritical pitchfork bifurcation in a schematic diagram 
of the THC response due to Rahmstorf (2000) in Figure 3. This is only observed in very simple (non-
generic) models and is replaced by a fold in more elaborate ones.   
   It is because of this lack of typicality of the pitchforks, that we have chosen to illustrate the safe and 
dangerous bifurcations in Figure 2 by other (co-dimension-1) bifurcations. As a safe event, we show in 
Figure 2(a) the supercritical Hopf bifurcation. This has an equilibrium path increasing monotonically 
with µ whose point attractor loses its stability at C in an oscillating fashion, throwing off a path of stable 
limit cycles which grow towards increasing µ. This occurs, for example, at the onset of vibrations in 
machining, and triggers the aerodynamic flutter of fins and ailerons in aircraft. Unlike the pitchfork, this 
picture is not qualitatively changed by small perturbations of the system. 
   As our explosive event, we show in Figure 2(b) the flow explosion involving a saddle-node fold on a 
limit cycle. Here the primary path of point attractors reaches a vertical tangent, and a large oscillation 
immediately ensues. As with the supercritical Hopf, all paths are re-followed on reversing the sweep of 
the control parameter µ: there is no hysteresis. 
   Finally, as our dangerous event in Figure 2(c), we have chosen the simple static fold (otherwise 
known as a saddle-node bifurcation), which is actually the most common bifurcation encountered in 
scientific applications: and we shall be discussing one for the THC in §6.1. Such a fold is in fact 
generated when a perturbation rounds off the (untypical) subcritical pitchfork, revealing a sharp 
imperfection sensitivity notorious in the buckling of thin aero-space shell structures (Thompson & Hunt, 
1984). In the fold, an equilibrium path of stable point attractors being followed under increasing µ folds 
smoothly backwards as an unstable path towards decreasing µ as shown. Approaching the turning point 
at µcrit there is a gradual loss of attracting strength, with the local decay rate (LDR) of transient motions 
(see §4) passing directly through zero with progress along the arc-length of the path. This makes its 
variation with µ parabolic, but this fine distinction seems to have little significance in the climate 
tipping studies of §6-7. Luckily, in these studies, the early decrease of LDR is usually identified long 
before any path curvature is apparent. As µ is increased through µcrit the system finds itself with no 
equilibrium state nearby, so there is inevitably a fast dynamic jump to a remote attractor of any type. On 
reversing the control sweep, the system will stay on this remote attractor, laying the foundation for a 
possible hysteresis cycle. 
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   We see immediately from these bifurcations that it is primarily the dangerous forms that will 
correspond to, and underlie, the climate tipping points that concern us here. (Though if, for example, we 
adopt Lenton's relatively relaxed definition of a tipping point based on time-horizons (see §5), even a  
safe bifurcation might be the underlying trigger.) Understanding the bifurcational aspects will be 
particularly helpful in a situation where some quasi-stationary dynamics can be viewed as an 
equilibrium path of a mainly-deterministic system, which may nevertheless be stochastically perturbed 
by noise. We should note that the dangerous bifurcations are often indeterminate in the sense that the 
remote attractor to which the system jumps often depends with infinite sensitivity on the precise manner 
in which the bifurcation is realised. This arises (quite commonly and typically) when the bifurcation 
point is located exactly on a fractal basin boundary (McDonald, et al 1985; Thompson, 1992, 1996). In 
a model, repeated runs from slightly varied starting conditions would be needed to explore all the 
possible outcomes. 
----------------------------------------------------------------------------------------------------------------------------- 

Precursors of Co-dimension-1 Bifurcations 
 Supercritical Hopf  S: point to cycle LDR → 0 linearly with control 
 Supercritical Neimark S: cycle to torus LDR → 0 linearly with control 
 Supercritical flip  S: cycle to cycle  LDR → 0 linearly with control 
 Band merging   S: chaos to chaos separation decreases linearly 
 Flow explosion  E: point to cycle Path folds. LDR → 0 linearly along path 
 Map explosion  E: cycle to torus Path folds. LDR → 0 linearly along path 
 Intermittency expl: flow E: point to chaos LDR → 0 linearly with control 
 Intermittency expl: map E: cycle to chaos LDR → 0 as trigger (fold, flip, Neimark) 
 Regular interior crisis E: chaos to chaos lingering near impinging saddle cycle 
 Chaotic interior crisis E: chaos to chaos lingering near impinging chaotic saddle 
 Static fold   D: from point  Path folds. LDR → 0 linearly along path 
 Cyclic fold   D: from cycle  Path folds. LDR → 0 linearly along path 
 Subcritical Hopf  D: from point  LDR → 0 linearly with control 
 Subcritical Neimark  D: from cycle  LDR → 0 linearly with control 
 Subcritical flip  D: from cycle   LDR → 0 linearly with control 
 Saddle connection  D: from cycle  period of cycle tends to infinity 
 Regular exterior crisis D: from chaos  lingering near impinging saddle cycle 
 Chaotic exterior crisis D: from chaos  lingering near impinging accessible saddle 
 
Table 5 List of all co-dimension-1 bifurcations of continuous dissipative dynamics, with notes on their precursors. Here S, E 
and D are used to signify the safe, explosive and dangerous events respectively. LDR is the local decay rate, measuring how 
rapidly the system returns to its steady state after a small perturbation. Being a linear feature, the LDR of a particular type of 

bifurcation is not influenced by the sub- or super-critical nature of the bifurcation. 
----------------------------------------------------------------------------------------------------------------------------- 
   Table 5 lists the precursors of the bifurcations from Table 2-4 that one would typically use to 
determine if a bifurcation is nearby in a (mostly) deterministic system. One perturbs the observed steady 
state by a small 'kick'. As the steady state is still stable the system relaxes back to the steady state. This 
relaxation decays exponentially proportional to exp(λt) where t is the time and λ (a negative quantity in 
this context) is the critical eigenvalue of the de-stabilizing mode (Thompson & Stewart, 2002). The 
local decay rate, LDR (called κ in §4), is the negative of λ.    
   Defined in this way, a positive LDR tending to zero quantifies the 'slowing of transients' as we head 
towards an instability. We see that the vast majority (though not all) of the typical events display the 
useful precursor that the local decay rate, LDR, vanishes at the bifurcation (although the decay is in 
some cases oscillatory). Under light stochastic noise, the variance of the critical mode will 
correspondingly exhibit a divergence proportional to the reciprocal of the LDR. The LDR precursor  
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certainly holds, with monotonic decay, for the static fold which is what we shall be looking at in §6.1 in 
the collapse of the North Atlantic thermohaline circulation. The fact, noted in Table 5, that close to the  
bifurcation some LDRs vary linearly with the control, while some vary linearly along the (folding) path 
is a fine distinction that may not be useful or observable in climate studies.  
   The outline of the co-dimension-1 bifurcations that we have just presented applies to dynamical flows 
which are generated by continuous systems where time changes smoothly as in the real world, and as in 
those computer models that are governed by differential equations. There are closely analogous theories 
and classifications for the bifurcations of dynamical maps governed (for example) by iterated systems, 
where time changes in finite steps. It is these analogous theories that will be needed when dealing with 
experimental data sets from ice cores, etc, as we shall show in the following section. Meanwhile the 
theory for discrete time data, has direct relevance to the possibility of tipping points in parts of the 
biosphere where time is often best thought of in generations or seasons; in some populations, such as 
insects, one generation disappears before the next is born. 
   The equivalent concept that we shall need for analysing discrete-time data is as follows. The method 
used in our examples from the recent literature (in §6 and §7) is to search for an underlying linearised 
deterministic map of the form  

yn+1 = c yn 
 

which governs the critical slowing mode of the transients. This equation represents exponential decay 
when the eigenvalue of the mapping, c, is less than one, but exponential growth when c is greater than 
one. So corresponding to LDR dropping to zero, we shall be expecting c to increase towards unity. 
 

4. Analysis of Time Series near Incipient Bifurcations 
 

Time series of observational data can help to predict incipient bifurcations in two ways. First, climate 
models, even if derived from first principles, require initial conditions on a fine mesh and depend on 
parameters (for example, the effective re-radiation coefficient from the Earth's land surface). Both, 
initial conditions and parameters, are often not measurable directly but must be extracted indirectly by 
fitting the output of models to training data. This process is called data assimilation. The alternative is 
to skip the modelling step and search for precursors of incipient dangerous bifurcations directly in a 
monitored time series. A typical example of an observational time series is shown (later) in the upper 
part of Figure 6. The time series clearly shows an abrupt transition at about 34 million years before the 
present (BP). One of the aims of time-series analysis would be to predict this transition (and, ideally, its 
time) from features of the time series prior to the transition. In this example one assumes that the 
system is in an equilibrium-like state which then disappears in a static fold, 34 million years BP. 
According to Table 5 the LDR tends to zero as we approach such a bifurcation.  
   A decreasing LDR corresponds to a slowing down of small-scale features in the time series which one 
can expect to be visible in many different ways. If it is possible to apply small pulse-like disturbances 
(or one knows that this type of disturbance has been present during the recording) the LDR is 
observable directly as the recovery rate from this disturbance (this was suggested for ecological systems 
by van Nes & Scheffer (2007)). However, natural disturbances that are typically present are noise-
induced fluctuations around the equilibrium. These fluctuations on short time-scales can be used to 
extract information about a decrease of the LDR. For example, the power spectrum of the noisy time-
series shifts toward lower frequencies. This reddening of the spectrum was analysed and tested by 
Kleinen et al (2003) as an indicator of a decrease of the LDR using the box models by Stommel (1961), 
and by Biggs et al (2009) in a fisheries model. Carpenter & Brock (2006) find that a decreasing LDR 
causes an increasing variance of the stationary temporal distributions in their study of stochastic 
ecological models. Also in studies of ecological models, Guttal & Jayaprakash (2008, 2009) find that 
increasing higher-order moments (such as skewness) of the temporal distribution can be a reliable early 
warning signal for a regime shift, as well as increasing higher-order moments of spatial distributions. 
Making the step from temporal to spatial distributions is of interest because advancing technology may  



 11
 
be able to increase the accuracy of measured spatial distributions more than measurements of temporal 
distributions (which require data from the past). 
 
4.1 Auto-regressive modelling and de-trended fluctuation analysis 
 
Held & Kleinen (2004) use the noise-induced fluctuations on the short-time scale to extract information 
about the LDR using auto-regressive (AR) modelling. See Box et al (1994) for a text book on statistical 
forecasting. In order to apply AR modelling to unevenly spaced, drifting data from geological records 
Dakos et al (2008) interpolated and de-trended the time series. We outline the procedure of Dakos et al 
(2008) in more detail for the example of a single-valued time series that is assumed to follow a slowly 
drifting equilibrium of a deterministic, dissipative dynamical system disturbed by noise-induced 
fluctuations. 
1. Interpolation If the time spacing between measurements is not equidistant (which is typical for 
geological time series) then one interpolates (for example, linearly) to obtain a time series on an 
equidistant mesh of time steps ∆t. The following steps assume that the time step ∆t satisfies 1/κ >> ∆t 
>> 1/κi where κ is the LDR of the time series and κi are the decay rates of other, non-critical, modes. For 
example, Held & Kleinen (2004) found that ∆t=50 years fits roughly into this interval for their tests on 
simulations (see Figure 4). The result of the interpolation is a time series xn of values approximating 
measurements on a mesh tn with time steps ∆t. 
2. Detrending To remove the slow drift of the equilibrium one finds and subtracts the slowly moving 
average of the time series xn. One possible choice is the average X(tn) of the time series xn taken for a 
Gaussian kernel of a certain bandwidth d. The result of this step is a time series yn= xn - X(tn) which 
fluctuates around zero as a stationary time series. Notice that X(tn) is the smoothed curve in the upper 
part of Figure 6. 
3. Fit LDR in moving window One assumes that the remaining time series, yn, can be modelled 
approximately by a stable scalar linear mapping, the so-called AR(1) model, disturbed by noise 

 

yn+1 = c yn + σ ηn 
 

where σ ηn is the instance of a random error at time tn and c (the mapping eigenvalue, sometimes called 
the propagator) is the correlation between successive elements of the time series yn. In places we follow 
other authors by calling c the first-order autoregressive coefficient, written as ARC(1). We note that 
under our assumptions c is related to the LDR, κ, via c = exp(κ∆t). If one assumes that the propagator, c, 
drifts slowly and that the random error, σ ηn, is independent and identically distributed (i.i.d.) sampled 
from a normal distribution then one can obtain the optimal approximation of the propagator c by an 
ordinary least-squares-fit of yn+1 = c yn over a moving time-window [tm-k ... tm+k]. Here the window 
length is 2k, and the estimation of c will be repeated as the centre of the window, given by m, moves 
through the field of data. The solution cm of this least-squares fit is an approximation of 
c(tm)=exp(κ(tm)∆t) and, thus, gives also an approximation of the LDR, κ(tm), at the middle of the 
window. The evolution of the propagator c is shown in the bottom of Figure 6. Finally, if one wants to 
make a prediction about the time tf at which the static fold occurs one has to extrapolate a fit of the 
propagator time series c(tm) to find the time tf such that c(tf) = 1. 
   The AR(1) model is only suitable to find out whether the equilibrium is close to a bifurcation or not. It 
is not able to distinguish between possible types of bifurcation as listed in Table 5. Higher order AR 
models can be re-constructed. For the data presented by Dakos et al (2008) these higher-order AR 
models confirm that, first, the first-order coefficient really is dominant, and, second, that this coefficient 
is increasing before the transition. 
   Livina & Lenton (2007) modified step 3 of the AR(1) approach of Held & Kleinen (2004), aiming to 
find estimates also for shorter time series with a long range memory using detrended fluctuation 
analysis (DFA; originally developed by Peng et al (1994) to detect long-range correlation in DNA  
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sequences). For DFA one determines the variance V(k) of the cumulated sum of the de-trended time 
series yn over windows of size k and fits the relation between V(k) and k to a power law: V(k) ~ kα. The 
exponent α approaches 3/2 when the LDR of the underlying deterministic system decreases to zero. 
   The method of Livina & Lenton (2007) was tested for simulations of the GENIE-1 model and on real 
data for the Greenland ice-core paleo-temperature (GISP2) data spanning the time from 50,000 years 
ago to the present. Extracting bifurcational precursors such as the ARC(1) propagator from the GISP2 
data is particularly challenging because the data set is comparatively small (1586 points) and unevenly 
spaced. Nevertheless, the propagator estimate extracted via Livina & Lenton’s detrended fluctuation 
analysis shows not only an increase but its intersection with unity would have predicted the rapid 
transition at the end of the Younger Dryas accurately. See Lenton et al (2009) for further discussion of 
the GENIE simulations.  
   Both methods, AR modelling and DFA, can in principle be used for (nearly) model-free prediction of 
tipping induced by a static fold. When testing the accuracy of predictions on model-generated or real 
data one should note the following two points. 
   First, assign the ARC(1) estimate to the time in the middle of the moving time window for which it 
has been fitted. Dakos et al (2008) have shifted the time argument of their ARC(1) estimate to the end 
point of the fitting interval because they were not concerned with accurate prediction (see §4.2). 
   Second, use only those parts of the time series c(t) that were derived from data prior to the onset of the 
transition. We can illustrate this using Figure 1. The time interval between adjacent data points used 
by Livina & Lenton (2007) and shown in Figure 1(a) is not a constant. The length of the sliding window 
in which the DFA1 propagator is repeatedly estimated is likewise variable. However, we show in Figure 
1(b) a typical length of the window, drawn as if the right-hand leading edge of the window had just 
reached the tipping point. For this notional window, the DFA1 result would be plotted in the centre of 
the window at point A. Since in a real prediction scenario we cannot have the right-hand leading edge of 
the window passing the tipping point, the DFA1 graph must be imagined to terminate at A. Although 
when working with historical or simulation data it is possible to allow the leading edge to pass the 
tipping point (as Livina & Lenton have done) the results after A become increasingly erroneous from a 
prediction point of view because the desired results for the pre-tipping DFA1 are increasingly 
contaminated by the spurious and irrelevant behaviour of the temperature graph after the tip. 
   
4.2 Comments on predictive power 
 
Ultimately, methods based on AR modelling have been designed to achieve quantitative predictions, 
giving an estimate of when tipping occurs with a certain confidence interval (similar to Figure 4). We 
note, however, that Dakos et al (2008), which is the most systematic study applying this analysis to 
geological data, make a much more modest claim: the propagator c(t) (and, hence, the estimated LDR) 
shows a statistically significant increase prior to each of the eight tipping events they investigated (listed 
in the introduction). Dakos et al (2008) applied statistical rank tests to the propagator c(tn) to establish 
statistical significance. In the procedures of §4.1 one has to choose a number of method parameters that 
are restricted by a-priori unknown quantities, for example, the step size ∆t for interpolation, the kernel 
bandwidth d, and the window length, 2k. A substantial part of the analysis in Dakos et al (2008) 
consisted of checking that the observed increase of c is largely independent of the choice of these 
parameters, thus, demonstrating that the increase of c is not an artefact of their method. The predictions 
one would make from the ARC(1) time series,  c(t), are, however, not as robust on the quantitative level 
(this will be discussed for two examples of Dakos et al (2008) in §7). For example, changing the 
window length 2k or the kernel bandwidth d shifts the time series of the estimated propagator 
horizontally and vertically: even a shift by ten percent corresponds to a shift for the estimated tipping by 
possibly thousands of years. Also the interpolation step size ∆t (interpolation is necessary due to the 
unevenly spaced records and the inherently non-discrete nature of the time series) may cause spurious 
auto-correlation. Another difficulty arises from an additional assumption one has to make for accurate 
prediction: the underlying control parameter is drifting (nearly) linearly in time during the recorded time  
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series. Even this assumption is not sufficient. A dynamical system can nearly reach the tipping point 
under gradual variation (say, increase) of a control parameter but turn back on its own if the parameter 
is increased further. The only definite conclusion one can draw from a decrease of the LDR to a small 
value is that generically there should exist a perturbation that leads to tipping. For a recorded time series 
this perturbation may simply not have happened. The term “generic” means that certain second-order 
terms in the underlying nonlinear deterministic system should have a substantially larger modulus than 
the vanishing LDR (Thompson & Stewart, 2002). This effect may lead to false positives when testing 
predictions using past data even if the AR models are perfectly accurate and the assumptions behind 
them are satisfied. 
   These difficulties all conspire to restrict the level of certainty that can be gained from predictions 
based on time series. Fortunately, from a geo-engineering point of view, these difficulties may be of  
minor relevance because establishing a decrease of the LDR is of the greatest interest in its own right. 
After all, the LDR is the primary direct indicator of sensitivity of the climate to perturbations (such as 
geo-engineering measures). 

5. Lenton's Tipping Elements 
 
Work at the beginning of this century which set out to define and examine climate tipping (Rahmstorf, 
2001; Lockwood, 2001; National Research Council, 2002; Alley et al, 2003; Rial, et al, 2004) focused 
on abrupt climate change: namely when the Earth system is forced to cross some threshold, triggering a 
transition to a new state at a rate determined by the climate system itself and faster than the cause, with 
some degree of irreversibility. As we noted in §3, this makes the tipping points essentially identical to 
the dangerous bifurcations of nonlinear dynamics.  
   As well as tipping points, the concept has arisen of tipping elements, these being well-defined sub-
systems of the climate which work (or can be assumed to work) fairly independently, and are prone to 
sudden change. In modelling them, their interactions with the rest of the climate system are typically 
expressed as a forcing that varies slowly over time. 
   Recently, Lenton et al (2008) have made a critical evaluation of policy-relevant tipping elements in 
the climate system that are particularly vulnerable to human activities. To do this they built on the 
discussions and conclusions of a recent international workshop entitled ‘‘Tipping Points in the Earth 
System’’ held at the British Embassy, Berlin, which brought together 36 experts in the field. 
Additionally they conducted an expert elicitation from 52 members of the international scientific 
community to rank the sensitivity of these elements to global warming. 
   In their work, they use the term tipping element to describe a subsystem of the Earth system that is at 
least sub-continental in scale, and can be switched into a qualitatively different state by small 
perturbations. Their definition is in some ways broader than that of some other workers because they 
wish to embrace the following: non-climatic variables; cases where the transition is actually slower than 
the anthropogenic forcing causing it; cases where a slight change in control may have a qualitative 
impact in the future without however any abrupt change. To produce their short list of key climatic 
tipping elements, summarised in Table 1 (in the introduction) and below, Lenton et al (2008) considered 
carefully to what extent they satisfied the following four conditions guaranteeing their relevance to 
international decision-making meetings such as Copenhagen (2009), the daughter of Kyoto. 
 Condition 1 
There is an adequate theoretical basis (or past evidence of threshold behaviour) to show that there are 
parameters controlling the system that can be combined into a single control µ for which there exists a 
critical control value µcrit. Exceeding this critical value leads to a qualitative change in a crucial system 
feature after prescribed times. 
 Condition 2 
Human activities are interfering with the system such that decisions taken within an appropriate 
political time horizon can determine whether the critical value for the control, µcrit, is reached. 
Condition 3 
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The time to observe a qualitative change plus the time to trigger it lie within an ethical time horizon 
which recognizes that events too far away in the future may not have the power to influence today’s 
decisions. 
Condition 4 
A significant number of people care about the expected outcome. This may be because (i) it affects 
significantly the overall mode of operation of the Earth system, such that the tipping would modify the 
qualitative state of the whole system, or (ii) it would deeply affect human welfare, such that the tipping 
would have impacts on many people, or (iii) it would seriously affect a unique feature of the biosphere.  
   In a personal communication, Tim Lenton kindly summarised his latest views as to which of these are 
likely to be governed by an underlying bifurcation. They are listed in the headings as follows. 
 
1. Arctic summer sea-ice: possible bifurcation 
Area coverage has strong positive feedback, and may exhibit bi-stability with perhaps multiple states for 
ice thickness (if the area covered by ice decreases less energy from insolation is reflected, resulting in 
increasing temperature and, thus, decreased ice coverage). The instability is not expected to be relevant 
to Southern Ocean sea-ice because the Antarctic continent covers the region over which it would be 
expected to arise (Maqueda et al, 1998). Some researchers think a summer ice-loss threshold, if not 
already passed, may be very close and a transition could occur well within this century. However 
Lindsay & Zhang (2005) are not so confident about a threshold, and Eisenman & Wettlaufer (2009) 
argue that there is probably no bifurcation for the loss of seasonal (summer) sea-ice cover: but there 
may be one for the year-round loss of ice cover. See also Winton (2006). 
2. Greenland ice sheet: bifurcation  
Ice-sheet models generally exhibit multiple stable states with nonlinear transitions between them 
(Saltzman, 2002), and this is reinforced by paleo-data. If a threshold is passed, the IPCC (2007) predicts 
a timescale of greater than 1,000 years for a collapse of the sheet. However, given the uncertainties in 
modelling a lower limit of 300 years is conceivable (Hansen, 2005). 
3. West Antarctic ice sheet: possible bifurcation  
Most of the West Antarctic ice sheet (WAIS) is grounded below sea level and could collapse if a retreat 
of the grounding-line (between the ice sheet and the ice shelf) triggers a strong positive feedback. The 
ice sheet has been prone to collapse, and models show internal instability. There are occasional major 
losses of ice in the so-called Heinrich events. Although the IPCC (2007) has not quoted a threshold, 
Lenton estimates a range that is accessible this century. Note that a rapid sea-level rise (of greater than 
one metre per century) is more likely to come from the WAIS than from the Greenland ice sheet. 
4. Atlantic thermohaline circulation: fold bifurcation 
A shutoff in Atlantic thermohaline circulation can occur if sufficient freshwater enters in the North to 
halt the density-driven North Atlantic Deep Water formation. Such THC changes played an important 
part in rapid climate changes recorded in Greenland during the last glacial cycle (Rahmstorf, 2002): see 
§7.2 for predictive studies of the Younger Dryas tipping event. As described in §6.1, a multitude of 
mathematical models, backed up by past data, show the THC to exhibit bi-stability and hysteresis with a 
fold bifurcation (see Figure 3 and discussion in §6.1). Since the THC helps to drive the Gulf Stream, a 
shut-down would significantly affect the climate of the British Isles. 
5. El Niño Southern Oscillation: some possibility of bifurcation 
The El Niño Southern Oscillation (ENSO) is the most significant ocean-atmosphere mode of climate 
variability, and it is susceptible to three main factors: the zonal mean thermocline depth, the thermocline 
sharpness in the eastern equatorial Pacific (EEP), and the strength of the annual cycle and hence the 
meridional temperature gradient across the equator (Guilyardi, 2006). So increased ocean heat uptake 
could cause a shift from present day ENSO variability to greater amplitude and/or more frequent El 
Niños (Timmermann et al, 1999). Recorded data suggests switching between different (self-sustaining) 
oscillatory regimes: however, it could be just noise-driven behaviour, with an underlying damped 
oscillation. 
6. Indian summer monsoon: possible bifurcation 
The Indian Summer Monsoon (ISM) is driven by a land-to-ocean pressure gradient, which is itself 
reinforced by the moisture that the monsoon carries from the adjacent Indian Ocean. This moisture-
advection feedback is described by (Zickfeld et al, 2005). Simple models of the monsoon give bi- 
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stability and fold bifurcations, with the monsoon switching from ‘on’ and ‘off’ states. Some data also 
suggest more complexity, with switches between different chaotic oscillations. 
7. Sahara/Sahel and West African monsoon: possible bifurcation 
The monsoon shows jumps of rainfall location even from season to season. Such jumps alter the local 
atmospheric circulation, suggesting multiple stable states. Indeed past greening of the Sahara occurred 
in the mid-Holocene and may have occurred rapidly in the earlier Bølling-Alleröd warming. Work by 
de Menocal et al (2000) suggests that the collapse of vegetation in the Sahara about 5,000 years ago 
occurred more rapidly than could be attributed to changes in the Earth’s orbital features. A sudden 
increase in green desert vegetation would of course be a welcome feature for the local population, but 
might have unforeseen knock-on effects elsewhere. 
8. Amazon rainforest: possible bifurcation 
In the Amazon basin, a large fraction of the rainfall evaporates causing further rainfall, and for this 
reason simulations of Amazon deforestation typically generate about 20-30% reductions in precipitation 
(Zeng et al, 1996), a lengthening of the dry season, and increases in summer temperatures (Kleidon & 
Heimann, 2000). The result is that it would be difficult for the forest to re-establish itself, suggesting 
that the system may exhibit bistability. 
9. Boreal forest: probably not a bifurcation 
The Northern or Boreal forest system exhibits a complex interplay between tree physiology, permafrost, 
and fire. Climate change could lead to large-scale dieback of these forests, with transitions to open 
woodlands or grasslands (Lucht et al, 2006; Joos et al, 2001). Based on limited evidence, the reduction 
of the tree fraction may have characteristics more like a quasi-static transition than a real bifurcation. 

 
6. Predictions of Tipping Points in Models 

 
6.1 Shutdown of the Thermohaline Circulation (THC)  
 
We choose to look, first, at the thermohaline circulation because it has been thoroughly examined over 
many years in computer simulations, and its bifurcational structure is quite well understood. 
   The remarkable global extent of the THC is well known. In the Atlantic it is closely related to, and 
helps to drive, the North Atlantic Current (including the Drift), and the Gulf Stream: so its variation 
could significantly effect the climate of the British Isles and Europe. It exhibits multi-stability and can 
switch abruptly in response to gradual changes in forcing which might arise from global warming. Its 
underlying dynamics are summarised schematically in Figure 3 adapted from the paper by Rahmstorf et 
al (2005), which itself drew on the classic paper of  Stommel (1961). This shows the response, 
represented by the overturning strength of the circulation (q), versus the forcing control, represented by 
the fresh water flux (from rivers, glaciers, etc) into the North Atlantic, (µ). The suggestion is that 
anthropogenic (man-induced) global warming may shift this control parameter, µ, past the fold 
bifurcation at a critical value of µ = µcrit (= 0.2 in this highly schematic diagram). The hope is that by 
tuning a climate model to available climatological data we could determine µcrit from that model, 
thereby throwing some light on the possible tipping of the real climate element. 
   The question of where the tipping shows in models has been addressed in a series of papers by 
Dijkstra & Weijer (2003, 2005), Dijkstra et al (2004), and Huisman et al (2009) using a hierarchy of 
models of increasing complexity. The simplest model is a box model consisting of two connected boxes 
of different temperatures and salinity representing the North Atlantic at low and high latitudes. For this 
box model it is known that two stable equilibria coexist for a large range of freshwater-forcing. The 
upper end of the model hierarchy is a full global ocean circulation model. 
   Using this high-end model, Dijkstra & Weijer (2005) applied techniques of numerical bifurcation 
theory to delineate two branches of stable steady-state solutions. One of these had a strong northern 
overturning in the Atlantic while the other had hardly any northern overturning, confirming 
qualitatively the sketch shown in Figure 3. Finally, Huisman et al (2009) have discovered four different 
flow regimes of their computer model. These they call the Conveyor (C), the Southern Sinking (SS), the  
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Northern Sinking (NS) and the Inverse Conveyor (IC), which appear as two disconnected branches of 
solutions, where the C is connected with the SS and the NS with the IC. The authors argue that these 
findings show, significantly, that the parameter volume for which multiple steady states exist is greatly 
increased. 
   An intuitive physical mechanism for bi-stability is the presence of two potential wells (at the bottom 
of each is a stable equilibrium) separated by a saddle, which corresponds to the unstable equilibrium. 
Applying a perturbation then corresponds to a temporary alteration of this potential energy landscape. 
Dijkstra, et al (2004) observed that this picture is approximately true for ocean circulation if one takes 
the average deviation of water density (as determined by salinity and temperature) from the original 
equilibrium as the potential energy. They showed, first for a box model and then for a global ocean 
circulation model, that the potential energy landscape of the unperturbed system defines the basins of  
attraction fairly accurately. This helps engineers and forecasters to determine whether a perturbation 
(for example, increased freshwater influx) enables the bi-stable system to cross from one basin of 
attraction to the other. 
   Concerning the simple box models of the THC, we might note their similarity to the atmospheric 
convection model in which Lorenz (1963) discovered the chaotic attractor: this points to the fact that we 
must expect chaotic features in the THC and other climate models. See Dijsktra (2008) for a summary 
of the current state of ocean modelling from a dynamical systems point of view, and, for example, 
Tziperman et al (1994) and Tziperman (1997) for how predictions of ocean models connect to full 
global circulation models. 

 
Figure 3 A schematic diagram of the thermohaline response showing the two bifurcations and the associated hysteresis cycle 

(Rahmstorf 2000). The subcritical pitchfork bifurcation will be observed in very simple models, but will be replaced by a 
fold in more elaborate ones: see, for example, Figure 5(b). Note that 1Sv is 106 cubic metres per second, which is roughly the 

combined flow rate of all rivers on Earth.   
 
   Building on these modelling efforts, ongoing research is actively trying to predict an imminent 
collapse at the fold seen in the models (for example, Figure 3) from bifurcational precursors in time 
series. Held & Kleinen (2004) use the local decay rate (LDR; described earlier in §4 and in Table 5) as 
the diagnostic variable that they think is most directly linked to the distance from a bifurcation threshold. 
They demonstrate its use to predict the shutdown of the North Atlantic thermohaline circulation using 
the oceanic output of CLIMBER2, a predictive coupled model of intermediate complexity (Petoukhov 
et al, 2000). They make a 50,000 years transient run with a linear increase in atmospheric CO2 from 280 
to 800 parts per million (ppm), which generates within the model an  
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increase in the fresh water forcing which is perturbed stochastically. This run results in the eventual 
collapse of the THC as shown in Figure 4. 
 

 
 

Figure 4 Results of Held & Kleinen (2004) which give a good prediction of the collapse of the thermohaline circulation 
induced by a 4-fold linear increase of CO2 over 50,000 years in a model simulation. Collapse present at t ≈ 0.8 in (a) is 

predicted to occur when the propagator, c = ARC(1), shown in (b), or its linear fit, reaches +1.  
 
   In Figure 4(a) the graph (corresponding approximately to the schematic diagram of Figure 3) is fairly 
linear over much of the timescale: there is no adequate early prediction of the fold bifurcation in terms 
of path curvature. The graph of Figure 4(b) shows the variation of the first-order autoregressive 
coefficient or propagator, ARC(1) which is described in §4. Unlike the response diagram of q(t), the 
time-series of ARC(1), although noisy, allows a fairly good prediction of the imminent collapse using 
the linear fit drawn: the fairly steady rise of ARC(1) towards its critical value of +1 is indeed seen over 
a very considerable time scale. Notice that the linear fit is surrounded by a 95% zone, giving probability 
bounds to the collapse time. These bounds emphasise that much more precise predictions will be needed 
before they can be used to guide policy on whether to implement geo-engineering proposals. 
    
6.2 Global Glaciation and Desertification of Africa 
 
  Along side their extensive studies of past climatic events using real paleo-data, Dakos et al (2008) also 
made some model studies as illustrated in Figure 5. For these, and subsequent figures, the number of 
data points, N, is quoted in the captions. 
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Figure 5 Results of Dakos et al (2008) for three examples based on predictive models.(a) Run-away to Glaciated Earth 
(N=800), (b) Collapse of Thermohaline Circulation (N=1000), (c) Desertification of North Africa (N=6002). Notice the 

notional hysteresis loops sketched on (b) and (c). These pictures have been re-drawn as mid-window plots. 
 

   In pictures of this type it is worth observing that there seems to be no agreed way of plotting the 
estimated auto-correlation coefficient. Held & Kleinen (2004) and Livina & Lenton (2007) plot ARC(1) 
at the centre of the moving window in which it has been determined. Meanwhile Dakos, et al (2008) 
plot ARC(1) at the final point of this window. Here, we have redrawn the results from the latter article 
by shifted the ARC(1) back by half the length of the sliding window, bringing the graphs into the format 
of Held & Kleinen (2004) and Livina & Lenton (2007). This is important whenever the intention is to 
make a forward extrapolation to a target, as we are doing here (see §4.1). This forward extrapolation 
can be made by any appropriate method. In fact, approaching (close to) an underlying fold bifurcation, 
ARC(1) will vary linearly along the solution path, but parabolically with the control parameter: this  
parabolic effect will only be relevant if the upper solution path is already curving appreciably, which is 
not the case in most of the present examples displayed here. 

 
7. Predictions of Ancient Tippings 

 
We have already presented the results of Livina & Lenton (2007) on the ending of the Younger Dryas 
event using Greenland ice-core data in Figure 1 of §1. Here we turn to Dakos, et al (2008) who present 
a systematic analysis of eight ancient climate transitions. They show that prior to all eight of these 
transitions the ARC(1) propagator c extracted from the time series of observations (as described in §4) 
shows a statistically significant increase, thus, providing evidence that these ancient transitions indeed 
correspond to tipping events. We show in the following subsections the results of Dakos et al (2008) for 
two of these events (leaving out the statistical tests). 
 
7.1 The Greenhouse to Icehouse Tipping 
 
We show first in Figure 6 their study of the greenhouse-icehouse tipping event that happened about 34 
million years ago. The time series in Figure 6(a) is the data, namely the calcium carbonate (CaCO3) 
content from tropical Pacific sediment cores. The smooth central line is the Gaussian kernel function 
used to filter out slow trends. The graph in Figure 6(b) shows the two plots of ARC(1) that are 
described in §6.2, and we notice that the mid-window projection is very close to the target, namely the 
known tipping point from the paleo-data. 
 

 
Figure 6 The ancient greenhouse to icehouse tipping with N=482 data points. This is one of the best correlations obtained by 
Dakos et al (2008) in their work on eight recorded tipping points. Here the sediments containing CaCO3 were laid down 30-

40 million years ago. Re-drawn from Dakos et al (2008), as described in the text.  
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7.2 End of the Younger Dryas Event 
 
To put things in perspective, Figure 7 shows a less-well correlated example from the Dakos paper, this 
one for the end of the Younger Dryas event using the grayscale from the Cariaco basin sediments in 
Venezuela. This Younger Dryas event (Houghton, 2004) was a curious cooling just as the Earth was 
warming up after the last ice age, as is clearly visible, for example, in records of the oxygen isotope 
δ18O in Greenland ice. It ended in a dramatic tipping point, about 11,500 yrs ago, when the Arctic 
warmed by 7ºC in 50 years. Its behaviour is thought to be linked to changes in the thermohaline  
circulation. As we have seen, this 'conveyor belt' is driven by the sinking of cold salty water in the 
North and can be stopped if too much fresh-melt makes the water less salty, and so less dense. At the 
end of the ice age when the ice-sheet over North America began to melt, the water first drained down 
the Mississippi basin into the Gulf of Mexico. Then, suddenly, it cut a new channel near the St 
Lawrence river to the North Atlantic. This sudden influx of fresh water cut off part of the ocean 
'conveyor belt', the warm Atlantic water stopped flowing North, and the Younger Dryas cooling was 
started. It was the re-start of the circulation that could have ended the Younger Dryas at its rapid tipping 
point, propelling the Earth into the warmer Pre-Boreal era. 
   In Figure 7(b), we see that the (mid-window) plot of the propagator ARC(1) gives a fairly inadequate 
prediction of the tipping despite its statistically significant increase. A possible cause for this 
discrepancy might be the violation of the central assumption underlying the extraction of ARC(1): 
before tipping the system is supposed to follow a slowly drifting equilibrium disturbed by noise-induced 
fluctuations. ARC(1) is very close to its critical value +1 for the whole time before tipping, which 
suggests that the underlying deterministic system is not at an equilibrium. Note that due to the de-
trending procedure the fitted ARC(1) will always be slightly less than +1. 
 

 
 

Figure 7 A second illustration taken from Dakos et al (2008) for the end of the Younger Dryas event using the grayscale 
from basin sediment in Cariaco, Venezuela. 

 
   We might note finally that a very recent paper on the Younger Dryas event by Bakke et al (2009) 
presents high-resolution records from two sediment cores obtained from Lake Kråkenes in western  
Norway and the Nordic seas. Multiple proxies from the former show signs of rapid alternations between 
glacial growth and melting. Simultaneously, sea temperature and salinity show an alternation related to 
the ice cover and the inflow of warm, salty North Atlantic waters. The suggestion is that there was a 
rapid flipping between two states before the fast tip at the end of Younger Dryas which created the 
permanent transition to an interglacial state. This strengthens the suspicion that the deterministic 
component of the dynamics behind the time series in Figure 7(a) is not near a slowly drifting 
equilibrium. It will be interesting to see if any useful time-series analyses can be made of this rapid 
fluttering action.  
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8. Concluding Remarks 
 

Our illustrations give a snapshot of very recent research showing the current status of predictive studies. 
They show that tipping events, corresponding mathematically to dangerous bifurcations, pose a likely 
threat to the current state of the climate because they cause rapid and irreversible transitions. Also, there 
is evidence that tipping events have been the mechanism behind climate transitions of the past. Model 
studies give hope that these tipping events are predictable using time series analysis: when applied to 
real geological data from past events prediction is often remarkably good but is not always reliable. 
With today's and tomorrow's vastly improved monitoring, giving times-series that are both longer 
(higher N) and much more accurate, reliable estimates can be confidently expected. However, if a 
system has already passed a bifurcation point one may ask whether it is in fact too late to usefully apply 
geoengineering because an irreversible transition is already underway.  
   Techniques from nonlinear dynamical systems enter the modelling side of climate prediction at two 
points. First, in data assimilation, which plays a role in the tuning and updating of models, the 
assimilated data is often Lagrangian (for example, it might come from drifting floats in the ocean). It 
turns out that optimal starting positions for these drifters are determined by stable and unstable 
manifolds of the vector field of the phase-space flow (Kuznetsov et al, 2003). Second, numerical 
bifurcation-tracking techniques for large-scale systems have become applicable to realistic large-scale 
climate models (Huisman et al, 2009). More generally, numerical continuation methods have been 
developed (for example, LOCA by Salinger et al (2002)) that are specifically designed for the 
continuation of equilibria of large physical systems. These general methods appear to be very promising 
for the analysis of tipping points in different types of deterministic climate models. These developments 
will permit efficient parameter studies where one can determine directly how the tipping event in the 
model varies when many system parameters are changed simultaneously. This may become particularly 
useful for extensive scenario studies in geo-engineering. 
   For example, Dijkstra et al (2004) demonstrated how bifurcation diagrams can help to determine 
which perturbations enable threshold-crossing in the bi-stable THC system, and Biggs et al (2009) 
studied how quickly perturbations have to be reversed to avoid jumping to co-existing attractors in a 
fisheries model. Furthermore, subtle microscopic nonlinearities, currently beyond the reach of climate 
models, may have a strong influence on the large spatial scale. For example, Golden (2009) observes 
that the permeability of sea ice to brine drainage changes drastically (from impermeable to permeable) 
when the brine volume fraction increases across the five percent mark. This microscopic tipping point 
may have a large-scale follow-on effect on the salinity of sea water near the arctic, and thus, the THC. 
Incorporating microscopic nonlinearities into the macroscopic picture is a challenge for future 
modelling efforts. 
   Concerning the techniques of time-series analysis, two developments in related fields are of interest. 
First, theoretical physicists are actively developing methods of time-series analysis that take into 
account unknown nonlinearities, allowing for short term predictions even if the underlying deterministic 
system is chaotic (Kantz & Schreiber, 2003). These methods permit, to a certain extent, the separation 
of the deterministic, chaotic, component of the time series from the noise (see also Takens (1981)). As 
several of the tipping events listed in Table 1 involve chaos, nonlinear time series analysis is a 
promising complement to the classical linear analysis. 
   Second, much can perhaps be learned from current predictive studies in the related field of theoretical 
ecology, discussing how higher-order moments of the noise-induced distributions help to detect tipping 
points. See §4 for a brief description and Biggs et al (2009) for a recent comparison between indicators 
in a fisheries model.  
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